Metamath Proof Explorer


Theorem wl-cases2-dnf

Description: A particular instance of orddi and anddi converting between disjunctive and conjunctive normal forms, when both ph and -. ph appear. This theorem in fact rephrases cases2 , and is related to consensus . I restate it here in DNF and CNF. The proof deliberately does not use df-ifp and dfifp4 , by which it can be shortened. (Contributed by Wolf Lammen, 21-Jun-2020) (Proof modification is discouraged.)

Ref Expression
Assertion wl-cases2-dnf φ ψ ¬ φ χ ¬ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 exmid φ ¬ φ
2 1 biantrur φ χ φ ¬ φ φ χ
3 orcom ¬ φ ψ ψ ¬ φ
4 orcom χ ψ ψ χ
5 3 4 anbi12i ¬ φ ψ χ ψ ψ ¬ φ ψ χ
6 2 5 anbi12i φ χ ¬ φ ψ χ ψ φ ¬ φ φ χ ψ ¬ φ ψ χ
7 anass φ χ ¬ φ ψ χ ψ φ χ ¬ φ ψ χ ψ
8 orddi φ ψ ¬ φ χ φ ¬ φ φ χ ψ ¬ φ ψ χ
9 6 7 8 3bitr4ri φ ψ ¬ φ χ φ χ ¬ φ ψ χ ψ
10 wl-orel12 φ χ ¬ φ ψ χ ψ
11 10 pm4.71i φ χ ¬ φ ψ φ χ ¬ φ ψ χ ψ
12 ancom φ χ ¬ φ ψ ¬ φ ψ φ χ
13 9 11 12 3bitr2i φ ψ ¬ φ χ ¬ φ ψ φ χ