Metamath Proof Explorer


Theorem wl-orel12

Description: In a conjunctive normal form a pair of nodes like ( ph \/ ps ) /\ ( -. ph \/ ch ) eliminates the need of a node ( ps \/ ch ) . This theorem allows simplifications in that respect. (Contributed by Wolf Lammen, 20-Jun-2020)

Ref Expression
Assertion wl-orel12 φ ψ ¬ φ χ ψ χ

Proof

Step Hyp Ref Expression
1 pm2.1 ¬ φ φ
2 orel1 ¬ φ φ ψ ψ
3 orc ψ ψ χ
4 2 3 syl6com φ ψ ¬ φ ψ χ
5 notnot φ ¬ ¬ φ
6 orel1 ¬ ¬ φ ¬ φ χ χ
7 5 6 syl φ ¬ φ χ χ
8 olc χ ψ χ
9 7 8 syl6com ¬ φ χ φ ψ χ
10 4 9 jaao φ ψ ¬ φ χ ¬ φ φ ψ χ
11 1 10 mpi φ ψ ¬ φ χ ψ χ