Metamath Proof Explorer


Theorem wl-cases2-dnf

Description: A particular instance of orddi and anddi converting between disjunctive and conjunctive normal forms, when both ph and -. ph appear. This theorem in fact rephrases cases2 , and is related to consensus . I restate it here in DNF and CNF. The proof deliberately does not use df-ifp and dfifp4 , by which it can be shortened. (Contributed by Wolf Lammen, 21-Jun-2020) (Proof modification is discouraged.)

Ref Expression
Assertion wl-cases2-dnf
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 exmid
 |-  ( ph \/ -. ph )
2 1 biantrur
 |-  ( ( ph \/ ch ) <-> ( ( ph \/ -. ph ) /\ ( ph \/ ch ) ) )
3 orcom
 |-  ( ( -. ph \/ ps ) <-> ( ps \/ -. ph ) )
4 orcom
 |-  ( ( ch \/ ps ) <-> ( ps \/ ch ) )
5 3 4 anbi12i
 |-  ( ( ( -. ph \/ ps ) /\ ( ch \/ ps ) ) <-> ( ( ps \/ -. ph ) /\ ( ps \/ ch ) ) )
6 2 5 anbi12i
 |-  ( ( ( ph \/ ch ) /\ ( ( -. ph \/ ps ) /\ ( ch \/ ps ) ) ) <-> ( ( ( ph \/ -. ph ) /\ ( ph \/ ch ) ) /\ ( ( ps \/ -. ph ) /\ ( ps \/ ch ) ) ) )
7 anass
 |-  ( ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) /\ ( ch \/ ps ) ) <-> ( ( ph \/ ch ) /\ ( ( -. ph \/ ps ) /\ ( ch \/ ps ) ) ) )
8 orddi
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ( ph \/ -. ph ) /\ ( ph \/ ch ) ) /\ ( ( ps \/ -. ph ) /\ ( ps \/ ch ) ) ) )
9 6 7 8 3bitr4ri
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) /\ ( ch \/ ps ) ) )
10 wl-orel12
 |-  ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) -> ( ch \/ ps ) )
11 10 pm4.71i
 |-  ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) <-> ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) /\ ( ch \/ ps ) ) )
12 ancom
 |-  ( ( ( ph \/ ch ) /\ ( -. ph \/ ps ) ) <-> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) )
13 9 11 12 3bitr2i
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) )