Metamath Proof Explorer


Theorem wsucex

Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypothesis wsucex.1
|- ( ph -> R Or A )
Assertion wsucex
|- ( ph -> wsuc ( R , A , X ) e. _V )

Proof

Step Hyp Ref Expression
1 wsucex.1
 |-  ( ph -> R Or A )
2 df-wsuc
 |-  wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R )
3 1 infexd
 |-  ( ph -> inf ( Pred ( `' R , A , X ) , A , R ) e. _V )
4 2 3 eqeltrid
 |-  ( ph -> wsuc ( R , A , X ) e. _V )