Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wsucex.1 | |- ( ph -> R Or A ) | |
| Assertion | wsucex | |- ( ph -> wsuc ( R , A , X ) e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wsucex.1 | |- ( ph -> R Or A ) | |
| 2 | df-wsuc | |- wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) | |
| 3 | 1 | infexd | |- ( ph -> inf ( Pred ( `' R , A , X ) , A , R ) e. _V ) | 
| 4 | 2 3 | eqeltrid | |- ( ph -> wsuc ( R , A , X ) e. _V ) |