Metamath Proof Explorer


Theorem wsucex

Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypothesis wsucex.1 φROrA
Assertion wsucex φwsucRAXV

Proof

Step Hyp Ref Expression
1 wsucex.1 φROrA
2 df-wsuc wsucRAX=supPredR-1AXAR
3 1 infexd φsupPredR-1AXARV
4 2 3 eqeltrid φwsucRAXV