Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wsucex.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
Assertion | wsucex | ⊢ ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wsucex.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | df-wsuc | ⊢ wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) | |
3 | 1 | infexd | ⊢ ( 𝜑 → inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ∈ V ) |
4 | 2 3 | eqeltrid | ⊢ ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |