Metamath Proof Explorer


Theorem wsucex

Description: Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypothesis wsucex.1 ( 𝜑𝑅 Or 𝐴 )
Assertion wsucex ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )

Proof

Step Hyp Ref Expression
1 wsucex.1 ( 𝜑𝑅 Or 𝐴 )
2 df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
3 1 infexd ( 𝜑 → inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ∈ V )
4 2 3 eqeltrid ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )