| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wsuccl.1 | ⊢ ( 𝜑  →  𝑅  We  𝐴 ) | 
						
							| 2 |  | wsuccl.2 | ⊢ ( 𝜑  →  𝑅  Se  𝐴 ) | 
						
							| 3 |  | wsuccl.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | wsuccl.4 | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐴 𝑋 𝑅 𝑦 ) | 
						
							| 5 |  | df-wsuc | ⊢ wsuc ( 𝑅 ,  𝐴 ,  𝑋 )  =  inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) | 
						
							| 6 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 8 | 1 2 3 4 | wsuclem | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  𝐴 ( ∀ 𝑏  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ¬  𝑏 𝑅 𝑎  ∧  ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  →  ∃ 𝑐  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) 𝑐 𝑅 𝑏 ) ) ) | 
						
							| 9 | 7 8 | infcl | ⊢ ( 𝜑  →  inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 )  ∈  𝐴 ) | 
						
							| 10 | 5 9 | eqeltrid | ⊢ ( 𝜑  →  wsuc ( 𝑅 ,  𝐴 ,  𝑋 )  ∈  𝐴 ) |