Step |
Hyp |
Ref |
Expression |
1 |
|
wsuccl.1 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
2 |
|
wsuccl.2 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
3 |
|
wsuccl.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
wsuccl.4 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 𝑋 𝑅 𝑦 ) |
5 |
|
df-wsuc |
⊢ wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) |
6 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
8 |
1 2 3 4
|
wsuclem |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ( ∀ 𝑏 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) ¬ 𝑏 𝑅 𝑎 ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 → ∃ 𝑐 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) 𝑐 𝑅 𝑏 ) ) ) |
9 |
7 8
|
infcl |
⊢ ( 𝜑 → inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
10 |
5 9
|
eqeltrid |
⊢ ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐴 ) |