Metamath Proof Explorer


Theorem wsuccl

Description: If X is a set with an R successor in A , then its well-founded successor is a member of A . (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuccl.1 ( 𝜑𝑅 We 𝐴 )
wsuccl.2 ( 𝜑𝑅 Se 𝐴 )
wsuccl.3 ( 𝜑𝑋𝑉 )
wsuccl.4 ( 𝜑 → ∃ 𝑦𝐴 𝑋 𝑅 𝑦 )
Assertion wsuccl ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 wsuccl.1 ( 𝜑𝑅 We 𝐴 )
2 wsuccl.2 ( 𝜑𝑅 Se 𝐴 )
3 wsuccl.3 ( 𝜑𝑋𝑉 )
4 wsuccl.4 ( 𝜑 → ∃ 𝑦𝐴 𝑋 𝑅 𝑦 )
5 df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
6 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
7 1 6 syl ( 𝜑𝑅 Or 𝐴 )
8 1 2 3 4 wsuclem ( 𝜑 → ∃ 𝑎𝐴 ( ∀ 𝑏 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ¬ 𝑏 𝑅 𝑎 ∧ ∀ 𝑏𝐴 ( 𝑎 𝑅 𝑏 → ∃ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) 𝑐 𝑅 𝑏 ) ) )
9 7 8 infcl ( 𝜑 → inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ∈ 𝐴 )
10 5 9 eqeltrid ( 𝜑 → wsuc ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐴 )