Step |
Hyp |
Ref |
Expression |
1 |
|
wsuclb.1 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
2 |
|
wsuclb.2 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
3 |
|
wsuclb.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
wsuclb.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
5 |
|
wsuclb.5 |
⊢ ( 𝜑 → 𝑋 𝑅 𝑌 ) |
6 |
|
brcnvg |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑌 ) ) |
7 |
4 3 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑌 ) ) |
8 |
5 7
|
mpbird |
⊢ ( 𝜑 → 𝑌 ◡ 𝑅 𝑋 ) |
9 |
|
elpredg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 ◡ 𝑅 𝑋 ) ) |
10 |
3 4 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 ◡ 𝑅 𝑋 ) ) |
11 |
8 10
|
mpbird |
⊢ ( 𝜑 → 𝑌 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) ) |
12 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
14 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝑅 𝑦 ↔ 𝑋 𝑅 𝑌 ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑋 𝑅 𝑌 ) → ∃ 𝑦 ∈ 𝐴 𝑋 𝑅 𝑦 ) |
16 |
4 5 15
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 𝑋 𝑅 𝑦 ) |
17 |
1 2 3 16
|
wsuclem |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ( ∀ 𝑏 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) ¬ 𝑏 𝑅 𝑎 ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 → ∃ 𝑐 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) 𝑐 𝑅 𝑏 ) ) ) |
18 |
13 17
|
inflb |
⊢ ( 𝜑 → ( 𝑌 ∈ Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) → ¬ 𝑌 𝑅 inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) ) |
19 |
11 18
|
mpd |
⊢ ( 𝜑 → ¬ 𝑌 𝑅 inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) |
20 |
|
df-wsuc |
⊢ wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) |
21 |
20
|
breq2i |
⊢ ( 𝑌 𝑅 wsuc ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 inf ( Pred ( ◡ 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) |
22 |
19 21
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑌 𝑅 wsuc ( 𝑅 , 𝐴 , 𝑋 ) ) |