| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wsuclb.1 | ⊢ ( 𝜑  →  𝑅  We  𝐴 ) | 
						
							| 2 |  | wsuclb.2 | ⊢ ( 𝜑  →  𝑅  Se  𝐴 ) | 
						
							| 3 |  | wsuclb.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | wsuclb.4 | ⊢ ( 𝜑  →  𝑌  ∈  𝐴 ) | 
						
							| 5 |  | wsuclb.5 | ⊢ ( 𝜑  →  𝑋 𝑅 𝑌 ) | 
						
							| 6 |  | brcnvg | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑋  ∈  𝑉 )  →  ( 𝑌 ◡ 𝑅 𝑋  ↔  𝑋 𝑅 𝑌 ) ) | 
						
							| 7 | 4 3 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌 ◡ 𝑅 𝑋  ↔  𝑋 𝑅 𝑌 ) ) | 
						
							| 8 | 5 7 | mpbird | ⊢ ( 𝜑  →  𝑌 ◡ 𝑅 𝑋 ) | 
						
							| 9 |  | elpredg | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝐴 )  →  ( 𝑌  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 )  ↔  𝑌 ◡ 𝑅 𝑋 ) ) | 
						
							| 10 | 3 4 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 )  ↔  𝑌 ◡ 𝑅 𝑋 ) ) | 
						
							| 11 | 8 10 | mpbird | ⊢ ( 𝜑  →  𝑌  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 12 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋 𝑅 𝑦  ↔  𝑋 𝑅 𝑌 ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑋 𝑅 𝑌 )  →  ∃ 𝑦  ∈  𝐴 𝑋 𝑅 𝑦 ) | 
						
							| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐴 𝑋 𝑅 𝑦 ) | 
						
							| 17 | 1 2 3 16 | wsuclem | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  𝐴 ( ∀ 𝑏  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ¬  𝑏 𝑅 𝑎  ∧  ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  →  ∃ 𝑐  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) 𝑐 𝑅 𝑏 ) ) ) | 
						
							| 18 | 13 17 | inflb | ⊢ ( 𝜑  →  ( 𝑌  ∈  Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 )  →  ¬  𝑌 𝑅 inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) ) | 
						
							| 19 | 11 18 | mpd | ⊢ ( 𝜑  →  ¬  𝑌 𝑅 inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) | 
						
							| 20 |  | df-wsuc | ⊢ wsuc ( 𝑅 ,  𝐴 ,  𝑋 )  =  inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) | 
						
							| 21 | 20 | breq2i | ⊢ ( 𝑌 𝑅 wsuc ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  𝑌 𝑅 inf ( Pred ( ◡ 𝑅 ,  𝐴 ,  𝑋 ) ,  𝐴 ,  𝑅 ) ) | 
						
							| 22 | 19 21 | sylnibr | ⊢ ( 𝜑  →  ¬  𝑌 𝑅 wsuc ( 𝑅 ,  𝐴 ,  𝑋 ) ) |