Metamath Proof Explorer


Theorem wsuclb

Description: A well-founded successor is a lower bound on points after X . (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuclb.1 ( 𝜑𝑅 We 𝐴 )
wsuclb.2 ( 𝜑𝑅 Se 𝐴 )
wsuclb.3 ( 𝜑𝑋𝑉 )
wsuclb.4 ( 𝜑𝑌𝐴 )
wsuclb.5 ( 𝜑𝑋 𝑅 𝑌 )
Assertion wsuclb ( 𝜑 → ¬ 𝑌 𝑅 wsuc ( 𝑅 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 wsuclb.1 ( 𝜑𝑅 We 𝐴 )
2 wsuclb.2 ( 𝜑𝑅 Se 𝐴 )
3 wsuclb.3 ( 𝜑𝑋𝑉 )
4 wsuclb.4 ( 𝜑𝑌𝐴 )
5 wsuclb.5 ( 𝜑𝑋 𝑅 𝑌 )
6 brcnvg ( ( 𝑌𝐴𝑋𝑉 ) → ( 𝑌 𝑅 𝑋𝑋 𝑅 𝑌 ) )
7 4 3 6 syl2anc ( 𝜑 → ( 𝑌 𝑅 𝑋𝑋 𝑅 𝑌 ) )
8 5 7 mpbird ( 𝜑𝑌 𝑅 𝑋 )
9 elpredg ( ( 𝑋𝑉𝑌𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )
10 3 4 9 syl2anc ( 𝜑 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )
11 8 10 mpbird ( 𝜑𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
12 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
13 1 12 syl ( 𝜑𝑅 Or 𝐴 )
14 breq2 ( 𝑦 = 𝑌 → ( 𝑋 𝑅 𝑦𝑋 𝑅 𝑌 ) )
15 14 rspcev ( ( 𝑌𝐴𝑋 𝑅 𝑌 ) → ∃ 𝑦𝐴 𝑋 𝑅 𝑦 )
16 4 5 15 syl2anc ( 𝜑 → ∃ 𝑦𝐴 𝑋 𝑅 𝑦 )
17 1 2 3 16 wsuclem ( 𝜑 → ∃ 𝑎𝐴 ( ∀ 𝑏 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ¬ 𝑏 𝑅 𝑎 ∧ ∀ 𝑏𝐴 ( 𝑎 𝑅 𝑏 → ∃ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) 𝑐 𝑅 𝑏 ) ) )
18 13 17 inflb ( 𝜑 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → ¬ 𝑌 𝑅 inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) ) )
19 11 18 mpd ( 𝜑 → ¬ 𝑌 𝑅 inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) )
20 df-wsuc wsuc ( 𝑅 , 𝐴 , 𝑋 ) = inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 )
21 20 breq2i ( 𝑌 𝑅 wsuc ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 inf ( Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝐴 , 𝑅 ) )
22 19 21 sylnibr ( 𝜑 → ¬ 𝑌 𝑅 wsuc ( 𝑅 , 𝐴 , 𝑋 ) )