| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wsuclb.1 |  |-  ( ph -> R We A ) | 
						
							| 2 |  | wsuclb.2 |  |-  ( ph -> R Se A ) | 
						
							| 3 |  | wsuclb.3 |  |-  ( ph -> X e. V ) | 
						
							| 4 |  | wsuclb.4 |  |-  ( ph -> Y e. A ) | 
						
							| 5 |  | wsuclb.5 |  |-  ( ph -> X R Y ) | 
						
							| 6 |  | brcnvg |  |-  ( ( Y e. A /\ X e. V ) -> ( Y `' R X <-> X R Y ) ) | 
						
							| 7 | 4 3 6 | syl2anc |  |-  ( ph -> ( Y `' R X <-> X R Y ) ) | 
						
							| 8 | 5 7 | mpbird |  |-  ( ph -> Y `' R X ) | 
						
							| 9 |  | elpredg |  |-  ( ( X e. V /\ Y e. A ) -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) ) | 
						
							| 10 | 3 4 9 | syl2anc |  |-  ( ph -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) ) | 
						
							| 11 | 8 10 | mpbird |  |-  ( ph -> Y e. Pred ( `' R , A , X ) ) | 
						
							| 12 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> R Or A ) | 
						
							| 14 |  | breq2 |  |-  ( y = Y -> ( X R y <-> X R Y ) ) | 
						
							| 15 | 14 | rspcev |  |-  ( ( Y e. A /\ X R Y ) -> E. y e. A X R y ) | 
						
							| 16 | 4 5 15 | syl2anc |  |-  ( ph -> E. y e. A X R y ) | 
						
							| 17 | 1 2 3 16 | wsuclem |  |-  ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) ) | 
						
							| 18 | 13 17 | inflb |  |-  ( ph -> ( Y e. Pred ( `' R , A , X ) -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) ) ) | 
						
							| 19 | 11 18 | mpd |  |-  ( ph -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) ) | 
						
							| 20 |  | df-wsuc |  |-  wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) | 
						
							| 21 | 20 | breq2i |  |-  ( Y R wsuc ( R , A , X ) <-> Y R inf ( Pred ( `' R , A , X ) , A , R ) ) | 
						
							| 22 | 19 21 | sylnibr |  |-  ( ph -> -. Y R wsuc ( R , A , X ) ) |