Step |
Hyp |
Ref |
Expression |
1 |
|
wsuclb.1 |
|- ( ph -> R We A ) |
2 |
|
wsuclb.2 |
|- ( ph -> R Se A ) |
3 |
|
wsuclb.3 |
|- ( ph -> X e. V ) |
4 |
|
wsuclb.4 |
|- ( ph -> Y e. A ) |
5 |
|
wsuclb.5 |
|- ( ph -> X R Y ) |
6 |
|
brcnvg |
|- ( ( Y e. A /\ X e. V ) -> ( Y `' R X <-> X R Y ) ) |
7 |
4 3 6
|
syl2anc |
|- ( ph -> ( Y `' R X <-> X R Y ) ) |
8 |
5 7
|
mpbird |
|- ( ph -> Y `' R X ) |
9 |
|
elpredg |
|- ( ( X e. V /\ Y e. A ) -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) ) |
10 |
3 4 9
|
syl2anc |
|- ( ph -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) ) |
11 |
8 10
|
mpbird |
|- ( ph -> Y e. Pred ( `' R , A , X ) ) |
12 |
|
weso |
|- ( R We A -> R Or A ) |
13 |
1 12
|
syl |
|- ( ph -> R Or A ) |
14 |
|
breq2 |
|- ( y = Y -> ( X R y <-> X R Y ) ) |
15 |
14
|
rspcev |
|- ( ( Y e. A /\ X R Y ) -> E. y e. A X R y ) |
16 |
4 5 15
|
syl2anc |
|- ( ph -> E. y e. A X R y ) |
17 |
1 2 3 16
|
wsuclem |
|- ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) ) |
18 |
13 17
|
inflb |
|- ( ph -> ( Y e. Pred ( `' R , A , X ) -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) ) ) |
19 |
11 18
|
mpd |
|- ( ph -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) ) |
20 |
|
df-wsuc |
|- wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) |
21 |
20
|
breq2i |
|- ( Y R wsuc ( R , A , X ) <-> Y R inf ( Pred ( `' R , A , X ) , A , R ) ) |
22 |
19 21
|
sylnibr |
|- ( ph -> -. Y R wsuc ( R , A , X ) ) |