Metamath Proof Explorer


Theorem wsuclb

Description: A well-founded successor is a lower bound on points after X . (Contributed by Scott Fenton, 16-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuclb.1
|- ( ph -> R We A )
wsuclb.2
|- ( ph -> R Se A )
wsuclb.3
|- ( ph -> X e. V )
wsuclb.4
|- ( ph -> Y e. A )
wsuclb.5
|- ( ph -> X R Y )
Assertion wsuclb
|- ( ph -> -. Y R wsuc ( R , A , X ) )

Proof

Step Hyp Ref Expression
1 wsuclb.1
 |-  ( ph -> R We A )
2 wsuclb.2
 |-  ( ph -> R Se A )
3 wsuclb.3
 |-  ( ph -> X e. V )
4 wsuclb.4
 |-  ( ph -> Y e. A )
5 wsuclb.5
 |-  ( ph -> X R Y )
6 brcnvg
 |-  ( ( Y e. A /\ X e. V ) -> ( Y `' R X <-> X R Y ) )
7 4 3 6 syl2anc
 |-  ( ph -> ( Y `' R X <-> X R Y ) )
8 5 7 mpbird
 |-  ( ph -> Y `' R X )
9 elpredg
 |-  ( ( X e. V /\ Y e. A ) -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) )
10 3 4 9 syl2anc
 |-  ( ph -> ( Y e. Pred ( `' R , A , X ) <-> Y `' R X ) )
11 8 10 mpbird
 |-  ( ph -> Y e. Pred ( `' R , A , X ) )
12 weso
 |-  ( R We A -> R Or A )
13 1 12 syl
 |-  ( ph -> R Or A )
14 breq2
 |-  ( y = Y -> ( X R y <-> X R Y ) )
15 14 rspcev
 |-  ( ( Y e. A /\ X R Y ) -> E. y e. A X R y )
16 4 5 15 syl2anc
 |-  ( ph -> E. y e. A X R y )
17 1 2 3 16 wsuclem
 |-  ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) )
18 13 17 inflb
 |-  ( ph -> ( Y e. Pred ( `' R , A , X ) -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) ) )
19 11 18 mpd
 |-  ( ph -> -. Y R inf ( Pred ( `' R , A , X ) , A , R ) )
20 df-wsuc
 |-  wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R )
21 20 breq2i
 |-  ( Y R wsuc ( R , A , X ) <-> Y R inf ( Pred ( `' R , A , X ) , A , R ) )
22 19 21 sylnibr
 |-  ( ph -> -. Y R wsuc ( R , A , X ) )