| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wsuclem.1 |  |-  ( ph -> R We A ) | 
						
							| 2 |  | wsuclem.2 |  |-  ( ph -> R Se A ) | 
						
							| 3 |  | wsuclem.3 |  |-  ( ph -> X e. V ) | 
						
							| 4 |  | wsuclem.4 |  |-  ( ph -> E. w e. A X R w ) | 
						
							| 5 |  | predss |  |-  Pred ( `' R , A , X ) C_ A | 
						
							| 6 | 5 | a1i |  |-  ( ph -> Pred ( `' R , A , X ) C_ A ) | 
						
							| 7 |  | dfpred3g |  |-  ( X e. V -> Pred ( `' R , A , X ) = { w e. A | w `' R X } ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> Pred ( `' R , A , X ) = { w e. A | w `' R X } ) | 
						
							| 9 | 3 | elexd |  |-  ( ph -> X e. _V ) | 
						
							| 10 |  | rabn0 |  |-  ( { w e. A | w `' R X } =/= (/) <-> E. w e. A w `' R X ) | 
						
							| 11 |  | brcnvg |  |-  ( ( w e. A /\ X e. _V ) -> ( w `' R X <-> X R w ) ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( X e. _V /\ w e. A ) -> ( w `' R X <-> X R w ) ) | 
						
							| 13 | 12 | rexbidva |  |-  ( X e. _V -> ( E. w e. A w `' R X <-> E. w e. A X R w ) ) | 
						
							| 14 | 10 13 | bitrid |  |-  ( X e. _V -> ( { w e. A | w `' R X } =/= (/) <-> E. w e. A X R w ) ) | 
						
							| 15 | 14 | biimpar |  |-  ( ( X e. _V /\ E. w e. A X R w ) -> { w e. A | w `' R X } =/= (/) ) | 
						
							| 16 | 9 4 15 | syl2anc |  |-  ( ph -> { w e. A | w `' R X } =/= (/) ) | 
						
							| 17 | 8 16 | eqnetrd |  |-  ( ph -> Pred ( `' R , A , X ) =/= (/) ) | 
						
							| 18 |  | tz6.26 |  |-  ( ( ( R We A /\ R Se A ) /\ ( Pred ( `' R , A , X ) C_ A /\ Pred ( `' R , A , X ) =/= (/) ) ) -> E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) | 
						
							| 19 | 1 2 6 17 18 | syl22anc |  |-  ( ph -> E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) | 
						
							| 20 |  | dfpred3g |  |-  ( X e. V -> Pred ( `' R , A , X ) = { y e. A | y `' R X } ) | 
						
							| 21 | 3 20 | syl |  |-  ( ph -> Pred ( `' R , A , X ) = { y e. A | y `' R X } ) | 
						
							| 22 | 21 | rexeqdv |  |-  ( ph -> ( E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) <-> E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) | 
						
							| 23 |  | breq1 |  |-  ( y = x -> ( y `' R X <-> x `' R X ) ) | 
						
							| 24 | 23 | rexrab |  |-  ( E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) <-> E. x e. A ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) | 
						
							| 25 |  | noel |  |-  -. y e. (/) | 
						
							| 26 |  | simp2r |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) | 
						
							| 27 | 26 | eleq2d |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y e. (/) ) ) | 
						
							| 28 | 25 27 | mtbiri |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y e. Pred ( R , Pred ( `' R , A , X ) , x ) ) | 
						
							| 29 |  | vex |  |-  x e. _V | 
						
							| 30 | 29 | a1i |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> x e. _V ) | 
						
							| 31 |  | simp3 |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> y e. Pred ( `' R , A , X ) ) | 
						
							| 32 |  | elpredg |  |-  ( ( x e. _V /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y R x ) ) | 
						
							| 33 | 30 31 32 | syl2anc |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y R x ) ) | 
						
							| 34 | 28 33 | mtbid |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y R x ) | 
						
							| 35 | 34 | 3expa |  |-  ( ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y R x ) | 
						
							| 36 | 35 | ralrimiva |  |-  ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) -> A. y e. Pred ( `' R , A , X ) -. y R x ) | 
						
							| 37 | 36 | expr |  |-  ( ( ph /\ x e. A ) -> ( Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> A. y e. Pred ( `' R , A , X ) -. y R x ) ) | 
						
							| 38 |  | simp1rl |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x e. A ) | 
						
							| 39 |  | simp1rr |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x `' R X ) | 
						
							| 40 | 3 | adantr |  |-  ( ( ph /\ ( x e. A /\ x `' R X ) ) -> X e. V ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> X e. V ) | 
						
							| 42 | 29 | elpred |  |-  ( X e. V -> ( x e. Pred ( `' R , A , X ) <-> ( x e. A /\ x `' R X ) ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> ( x e. Pred ( `' R , A , X ) <-> ( x e. A /\ x `' R X ) ) ) | 
						
							| 44 | 38 39 43 | mpbir2and |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x e. Pred ( `' R , A , X ) ) | 
						
							| 45 |  | simp3 |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x R y ) | 
						
							| 46 |  | breq1 |  |-  ( z = x -> ( z R y <-> x R y ) ) | 
						
							| 47 | 46 | rspcev |  |-  ( ( x e. Pred ( `' R , A , X ) /\ x R y ) -> E. z e. Pred ( `' R , A , X ) z R y ) | 
						
							| 48 | 44 45 47 | syl2anc |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> E. z e. Pred ( `' R , A , X ) z R y ) | 
						
							| 49 | 48 | 3expia |  |-  ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A ) -> ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) | 
						
							| 50 | 49 | ralrimiva |  |-  ( ( ph /\ ( x e. A /\ x `' R X ) ) -> A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) | 
						
							| 51 | 50 | expr |  |-  ( ( ph /\ x e. A ) -> ( x `' R X -> A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) | 
						
							| 52 | 37 51 | anim12d |  |-  ( ( ph /\ x e. A ) -> ( ( Pred ( R , Pred ( `' R , A , X ) , x ) = (/) /\ x `' R X ) -> ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) | 
						
							| 53 | 52 | ancomsd |  |-  ( ( ph /\ x e. A ) -> ( ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) -> ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) | 
						
							| 54 | 53 | reximdva |  |-  ( ph -> ( E. x e. A ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) | 
						
							| 55 | 24 54 | biimtrid |  |-  ( ph -> ( E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) | 
						
							| 56 | 22 55 | sylbid |  |-  ( ph -> ( E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) | 
						
							| 57 | 19 56 | mpd |  |-  ( ph -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) |