Step |
Hyp |
Ref |
Expression |
1 |
|
wsuclem.1 |
|- ( ph -> R We A ) |
2 |
|
wsuclem.2 |
|- ( ph -> R Se A ) |
3 |
|
wsuclem.3 |
|- ( ph -> X e. V ) |
4 |
|
wsuclem.4 |
|- ( ph -> E. w e. A X R w ) |
5 |
|
predss |
|- Pred ( `' R , A , X ) C_ A |
6 |
5
|
a1i |
|- ( ph -> Pred ( `' R , A , X ) C_ A ) |
7 |
|
dfpred3g |
|- ( X e. V -> Pred ( `' R , A , X ) = { w e. A | w `' R X } ) |
8 |
3 7
|
syl |
|- ( ph -> Pred ( `' R , A , X ) = { w e. A | w `' R X } ) |
9 |
3
|
elexd |
|- ( ph -> X e. _V ) |
10 |
|
rabn0 |
|- ( { w e. A | w `' R X } =/= (/) <-> E. w e. A w `' R X ) |
11 |
|
brcnvg |
|- ( ( w e. A /\ X e. _V ) -> ( w `' R X <-> X R w ) ) |
12 |
11
|
ancoms |
|- ( ( X e. _V /\ w e. A ) -> ( w `' R X <-> X R w ) ) |
13 |
12
|
rexbidva |
|- ( X e. _V -> ( E. w e. A w `' R X <-> E. w e. A X R w ) ) |
14 |
10 13
|
syl5bb |
|- ( X e. _V -> ( { w e. A | w `' R X } =/= (/) <-> E. w e. A X R w ) ) |
15 |
14
|
biimpar |
|- ( ( X e. _V /\ E. w e. A X R w ) -> { w e. A | w `' R X } =/= (/) ) |
16 |
9 4 15
|
syl2anc |
|- ( ph -> { w e. A | w `' R X } =/= (/) ) |
17 |
8 16
|
eqnetrd |
|- ( ph -> Pred ( `' R , A , X ) =/= (/) ) |
18 |
|
tz6.26 |
|- ( ( ( R We A /\ R Se A ) /\ ( Pred ( `' R , A , X ) C_ A /\ Pred ( `' R , A , X ) =/= (/) ) ) -> E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) |
19 |
1 2 6 17 18
|
syl22anc |
|- ( ph -> E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) |
20 |
|
dfpred3g |
|- ( X e. V -> Pred ( `' R , A , X ) = { y e. A | y `' R X } ) |
21 |
3 20
|
syl |
|- ( ph -> Pred ( `' R , A , X ) = { y e. A | y `' R X } ) |
22 |
21
|
rexeqdv |
|- ( ph -> ( E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) <-> E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) |
23 |
|
breq1 |
|- ( y = x -> ( y `' R X <-> x `' R X ) ) |
24 |
23
|
rexrab |
|- ( E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) <-> E. x e. A ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) |
25 |
|
noel |
|- -. y e. (/) |
26 |
|
simp2r |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) |
27 |
26
|
eleq2d |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y e. (/) ) ) |
28 |
25 27
|
mtbiri |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y e. Pred ( R , Pred ( `' R , A , X ) , x ) ) |
29 |
|
vex |
|- x e. _V |
30 |
29
|
a1i |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> x e. _V ) |
31 |
|
simp3 |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> y e. Pred ( `' R , A , X ) ) |
32 |
|
elpredg |
|- ( ( x e. _V /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y R x ) ) |
33 |
30 31 32
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> ( y e. Pred ( R , Pred ( `' R , A , X ) , x ) <-> y R x ) ) |
34 |
28 33
|
mtbid |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y R x ) |
35 |
34
|
3expa |
|- ( ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) /\ y e. Pred ( `' R , A , X ) ) -> -. y R x ) |
36 |
35
|
ralrimiva |
|- ( ( ph /\ ( x e. A /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) ) -> A. y e. Pred ( `' R , A , X ) -. y R x ) |
37 |
36
|
expr |
|- ( ( ph /\ x e. A ) -> ( Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> A. y e. Pred ( `' R , A , X ) -. y R x ) ) |
38 |
|
simp1rl |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x e. A ) |
39 |
|
simp1rr |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x `' R X ) |
40 |
3
|
adantr |
|- ( ( ph /\ ( x e. A /\ x `' R X ) ) -> X e. V ) |
41 |
40
|
3ad2ant1 |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> X e. V ) |
42 |
29
|
elpred |
|- ( X e. V -> ( x e. Pred ( `' R , A , X ) <-> ( x e. A /\ x `' R X ) ) ) |
43 |
41 42
|
syl |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> ( x e. Pred ( `' R , A , X ) <-> ( x e. A /\ x `' R X ) ) ) |
44 |
38 39 43
|
mpbir2and |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x e. Pred ( `' R , A , X ) ) |
45 |
|
simp3 |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> x R y ) |
46 |
|
breq1 |
|- ( z = x -> ( z R y <-> x R y ) ) |
47 |
46
|
rspcev |
|- ( ( x e. Pred ( `' R , A , X ) /\ x R y ) -> E. z e. Pred ( `' R , A , X ) z R y ) |
48 |
44 45 47
|
syl2anc |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A /\ x R y ) -> E. z e. Pred ( `' R , A , X ) z R y ) |
49 |
48
|
3expia |
|- ( ( ( ph /\ ( x e. A /\ x `' R X ) ) /\ y e. A ) -> ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) |
50 |
49
|
ralrimiva |
|- ( ( ph /\ ( x e. A /\ x `' R X ) ) -> A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) |
51 |
50
|
expr |
|- ( ( ph /\ x e. A ) -> ( x `' R X -> A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) |
52 |
37 51
|
anim12d |
|- ( ( ph /\ x e. A ) -> ( ( Pred ( R , Pred ( `' R , A , X ) , x ) = (/) /\ x `' R X ) -> ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) |
53 |
52
|
ancomsd |
|- ( ( ph /\ x e. A ) -> ( ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) -> ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) |
54 |
53
|
reximdva |
|- ( ph -> ( E. x e. A ( x `' R X /\ Pred ( R , Pred ( `' R , A , X ) , x ) = (/) ) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) |
55 |
24 54
|
syl5bi |
|- ( ph -> ( E. x e. { y e. A | y `' R X } Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) |
56 |
22 55
|
sylbid |
|- ( ph -> ( E. x e. Pred ( `' R , A , X ) Pred ( R , Pred ( `' R , A , X ) , x ) = (/) -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) ) |
57 |
19 56
|
mpd |
|- ( ph -> E. x e. A ( A. y e. Pred ( `' R , A , X ) -. y R x /\ A. y e. A ( x R y -> E. z e. Pred ( `' R , A , X ) z R y ) ) ) |