Metamath Proof Explorer


Theorem wsuclem

Description: Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuclem.1 φ R We A
wsuclem.2 φ R Se A
wsuclem.3 φ X V
wsuclem.4 φ w A X R w
Assertion wsuclem φ x A y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y

Proof

Step Hyp Ref Expression
1 wsuclem.1 φ R We A
2 wsuclem.2 φ R Se A
3 wsuclem.3 φ X V
4 wsuclem.4 φ w A X R w
5 predss Pred R -1 A X A
6 5 a1i φ Pred R -1 A X A
7 dfpred3g X V Pred R -1 A X = w A | w R -1 X
8 3 7 syl φ Pred R -1 A X = w A | w R -1 X
9 3 elexd φ X V
10 rabn0 w A | w R -1 X w A w R -1 X
11 brcnvg w A X V w R -1 X X R w
12 11 ancoms X V w A w R -1 X X R w
13 12 rexbidva X V w A w R -1 X w A X R w
14 10 13 syl5bb X V w A | w R -1 X w A X R w
15 14 biimpar X V w A X R w w A | w R -1 X
16 9 4 15 syl2anc φ w A | w R -1 X
17 8 16 eqnetrd φ Pred R -1 A X
18 tz6.26 R We A R Se A Pred R -1 A X A Pred R -1 A X x Pred R -1 A X Pred R Pred R -1 A X x =
19 1 2 6 17 18 syl22anc φ x Pred R -1 A X Pred R Pred R -1 A X x =
20 dfpred3g X V Pred R -1 A X = y A | y R -1 X
21 3 20 syl φ Pred R -1 A X = y A | y R -1 X
22 21 rexeqdv φ x Pred R -1 A X Pred R Pred R -1 A X x = x y A | y R -1 X Pred R Pred R -1 A X x =
23 breq1 y = x y R -1 X x R -1 X
24 23 rexrab x y A | y R -1 X Pred R Pred R -1 A X x = x A x R -1 X Pred R Pred R -1 A X x =
25 noel ¬ y
26 simp2r φ x A Pred R Pred R -1 A X x = y Pred R -1 A X Pred R Pred R -1 A X x =
27 26 eleq2d φ x A Pred R Pred R -1 A X x = y Pred R -1 A X y Pred R Pred R -1 A X x y
28 25 27 mtbiri φ x A Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y Pred R Pred R -1 A X x
29 vex x V
30 29 a1i φ x A Pred R Pred R -1 A X x = y Pred R -1 A X x V
31 simp3 φ x A Pred R Pred R -1 A X x = y Pred R -1 A X y Pred R -1 A X
32 elpredg x V y Pred R -1 A X y Pred R Pred R -1 A X x y R x
33 30 31 32 syl2anc φ x A Pred R Pred R -1 A X x = y Pred R -1 A X y Pred R Pred R -1 A X x y R x
34 28 33 mtbid φ x A Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y R x
35 34 3expa φ x A Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y R x
36 35 ralrimiva φ x A Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y R x
37 36 expr φ x A Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y R x
38 simp1rl φ x A x R -1 X y A x R y x A
39 simp1rr φ x A x R -1 X y A x R y x R -1 X
40 3 adantr φ x A x R -1 X X V
41 40 3ad2ant1 φ x A x R -1 X y A x R y X V
42 29 elpred X V x Pred R -1 A X x A x R -1 X
43 41 42 syl φ x A x R -1 X y A x R y x Pred R -1 A X x A x R -1 X
44 38 39 43 mpbir2and φ x A x R -1 X y A x R y x Pred R -1 A X
45 simp3 φ x A x R -1 X y A x R y x R y
46 breq1 z = x z R y x R y
47 46 rspcev x Pred R -1 A X x R y z Pred R -1 A X z R y
48 44 45 47 syl2anc φ x A x R -1 X y A x R y z Pred R -1 A X z R y
49 48 3expia φ x A x R -1 X y A x R y z Pred R -1 A X z R y
50 49 ralrimiva φ x A x R -1 X y A x R y z Pred R -1 A X z R y
51 50 expr φ x A x R -1 X y A x R y z Pred R -1 A X z R y
52 37 51 anim12d φ x A Pred R Pred R -1 A X x = x R -1 X y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y
53 52 ancomsd φ x A x R -1 X Pred R Pred R -1 A X x = y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y
54 53 reximdva φ x A x R -1 X Pred R Pred R -1 A X x = x A y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y
55 24 54 syl5bi φ x y A | y R -1 X Pred R Pred R -1 A X x = x A y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y
56 22 55 sylbid φ x Pred R -1 A X Pred R Pred R -1 A X x = x A y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y
57 19 56 mpd φ x A y Pred R -1 A X ¬ y R x y A x R y z Pred R -1 A X z R y