| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wsuclem.1 |
|
| 2 |
|
wsuclem.2 |
|
| 3 |
|
wsuclem.3 |
|
| 4 |
|
wsuclem.4 |
|
| 5 |
|
predss |
|
| 6 |
5
|
a1i |
|
| 7 |
|
dfpred3g |
|
| 8 |
3 7
|
syl |
|
| 9 |
3
|
elexd |
|
| 10 |
|
rabn0 |
|
| 11 |
|
brcnvg |
|
| 12 |
11
|
ancoms |
|
| 13 |
12
|
rexbidva |
|
| 14 |
10 13
|
bitrid |
|
| 15 |
14
|
biimpar |
|
| 16 |
9 4 15
|
syl2anc |
|
| 17 |
8 16
|
eqnetrd |
|
| 18 |
|
tz6.26 |
|
| 19 |
1 2 6 17 18
|
syl22anc |
|
| 20 |
|
dfpred3g |
|
| 21 |
3 20
|
syl |
|
| 22 |
21
|
rexeqdv |
|
| 23 |
|
breq1 |
|
| 24 |
23
|
rexrab |
|
| 25 |
|
noel |
|
| 26 |
|
simp2r |
|
| 27 |
26
|
eleq2d |
|
| 28 |
25 27
|
mtbiri |
|
| 29 |
|
vex |
|
| 30 |
29
|
a1i |
|
| 31 |
|
simp3 |
|
| 32 |
|
elpredg |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
28 33
|
mtbid |
|
| 35 |
34
|
3expa |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
36
|
expr |
|
| 38 |
|
simp1rl |
|
| 39 |
|
simp1rr |
|
| 40 |
3
|
adantr |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
29
|
elpred |
|
| 43 |
41 42
|
syl |
|
| 44 |
38 39 43
|
mpbir2and |
|
| 45 |
|
simp3 |
|
| 46 |
|
breq1 |
|
| 47 |
46
|
rspcev |
|
| 48 |
44 45 47
|
syl2anc |
|
| 49 |
48
|
3expia |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
50
|
expr |
|
| 52 |
37 51
|
anim12d |
|
| 53 |
52
|
ancomsd |
|
| 54 |
53
|
reximdva |
|
| 55 |
24 54
|
biimtrid |
|
| 56 |
22 55
|
sylbid |
|
| 57 |
19 56
|
mpd |
|