Step |
Hyp |
Ref |
Expression |
1 |
|
wsuclem.1 |
|
2 |
|
wsuclem.2 |
|
3 |
|
wsuclem.3 |
|
4 |
|
wsuclem.4 |
|
5 |
|
predss |
|
6 |
5
|
a1i |
|
7 |
|
dfpred3g |
|
8 |
3 7
|
syl |
|
9 |
3
|
elexd |
|
10 |
|
rabn0 |
|
11 |
|
brcnvg |
|
12 |
11
|
ancoms |
|
13 |
12
|
rexbidva |
|
14 |
10 13
|
syl5bb |
|
15 |
14
|
biimpar |
|
16 |
9 4 15
|
syl2anc |
|
17 |
8 16
|
eqnetrd |
|
18 |
|
tz6.26 |
|
19 |
1 2 6 17 18
|
syl22anc |
|
20 |
|
dfpred3g |
|
21 |
3 20
|
syl |
|
22 |
21
|
rexeqdv |
|
23 |
|
breq1 |
|
24 |
23
|
rexrab |
|
25 |
|
noel |
|
26 |
|
simp2r |
|
27 |
26
|
eleq2d |
|
28 |
25 27
|
mtbiri |
|
29 |
|
vex |
|
30 |
29
|
a1i |
|
31 |
|
simp3 |
|
32 |
|
elpredg |
|
33 |
30 31 32
|
syl2anc |
|
34 |
28 33
|
mtbid |
|
35 |
34
|
3expa |
|
36 |
35
|
ralrimiva |
|
37 |
36
|
expr |
|
38 |
|
simp1rl |
|
39 |
|
simp1rr |
|
40 |
3
|
adantr |
|
41 |
40
|
3ad2ant1 |
|
42 |
29
|
elpred |
|
43 |
41 42
|
syl |
|
44 |
38 39 43
|
mpbir2and |
|
45 |
|
simp3 |
|
46 |
|
breq1 |
|
47 |
46
|
rspcev |
|
48 |
44 45 47
|
syl2anc |
|
49 |
48
|
3expia |
|
50 |
49
|
ralrimiva |
|
51 |
50
|
expr |
|
52 |
37 51
|
anim12d |
|
53 |
52
|
ancomsd |
|
54 |
53
|
reximdva |
|
55 |
24 54
|
syl5bi |
|
56 |
22 55
|
sylbid |
|
57 |
19 56
|
mpd |
|