Metamath Proof Explorer


Theorem elpredg

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredg XBYAYPredRAXYRX

Proof

Step Hyp Ref Expression
1 elpredgg XBYAYPredRAXYAYRX
2 ibar YAYRXYAYRX
3 2 bicomd YAYAYRXYRX
4 3 adantl XBYAYAYRXYRX
5 1 4 bitrd XBYAYPredRAXYRX