Metamath Proof Explorer


Theorem wsuccl

Description: If X is a set with an R successor in A , then its well-founded successor is a member of A . (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuccl.1 φ R We A
wsuccl.2 φ R Se A
wsuccl.3 φ X V
wsuccl.4 φ y A X R y
Assertion wsuccl φ wsuc R A X A

Proof

Step Hyp Ref Expression
1 wsuccl.1 φ R We A
2 wsuccl.2 φ R Se A
3 wsuccl.3 φ X V
4 wsuccl.4 φ y A X R y
5 df-wsuc wsuc R A X = sup Pred R -1 A X A R
6 weso R We A R Or A
7 1 6 syl φ R Or A
8 1 2 3 4 wsuclem φ a A b Pred R -1 A X ¬ b R a b A a R b c Pred R -1 A X c R b
9 7 8 infcl φ sup Pred R -1 A X A R A
10 5 9 eqeltrid φ wsuc R A X A