Metamath Proof Explorer


Theorem wsuccl

Description: If X is a set with an R successor in A , then its well-founded successor is a member of A . (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuccl.1
|- ( ph -> R We A )
wsuccl.2
|- ( ph -> R Se A )
wsuccl.3
|- ( ph -> X e. V )
wsuccl.4
|- ( ph -> E. y e. A X R y )
Assertion wsuccl
|- ( ph -> wsuc ( R , A , X ) e. A )

Proof

Step Hyp Ref Expression
1 wsuccl.1
 |-  ( ph -> R We A )
2 wsuccl.2
 |-  ( ph -> R Se A )
3 wsuccl.3
 |-  ( ph -> X e. V )
4 wsuccl.4
 |-  ( ph -> E. y e. A X R y )
5 df-wsuc
 |-  wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R )
6 weso
 |-  ( R We A -> R Or A )
7 1 6 syl
 |-  ( ph -> R Or A )
8 1 2 3 4 wsuclem
 |-  ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) )
9 7 8 infcl
 |-  ( ph -> inf ( Pred ( `' R , A , X ) , A , R ) e. A )
10 5 9 eqeltrid
 |-  ( ph -> wsuc ( R , A , X ) e. A )