| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wsuccl.1 |  |-  ( ph -> R We A ) | 
						
							| 2 |  | wsuccl.2 |  |-  ( ph -> R Se A ) | 
						
							| 3 |  | wsuccl.3 |  |-  ( ph -> X e. V ) | 
						
							| 4 |  | wsuccl.4 |  |-  ( ph -> E. y e. A X R y ) | 
						
							| 5 |  | df-wsuc |  |-  wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) | 
						
							| 6 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> R Or A ) | 
						
							| 8 | 1 2 3 4 | wsuclem |  |-  ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) ) | 
						
							| 9 | 7 8 | infcl |  |-  ( ph -> inf ( Pred ( `' R , A , X ) , A , R ) e. A ) | 
						
							| 10 | 5 9 | eqeltrid |  |-  ( ph -> wsuc ( R , A , X ) e. A ) |