Step |
Hyp |
Ref |
Expression |
1 |
|
wsuccl.1 |
|- ( ph -> R We A ) |
2 |
|
wsuccl.2 |
|- ( ph -> R Se A ) |
3 |
|
wsuccl.3 |
|- ( ph -> X e. V ) |
4 |
|
wsuccl.4 |
|- ( ph -> E. y e. A X R y ) |
5 |
|
df-wsuc |
|- wsuc ( R , A , X ) = inf ( Pred ( `' R , A , X ) , A , R ) |
6 |
|
weso |
|- ( R We A -> R Or A ) |
7 |
1 6
|
syl |
|- ( ph -> R Or A ) |
8 |
1 2 3 4
|
wsuclem |
|- ( ph -> E. a e. A ( A. b e. Pred ( `' R , A , X ) -. b R a /\ A. b e. A ( a R b -> E. c e. Pred ( `' R , A , X ) c R b ) ) ) |
9 |
7 8
|
infcl |
|- ( ph -> inf ( Pred ( `' R , A , X ) , A , R ) e. A ) |
10 |
5 9
|
eqeltrid |
|- ( ph -> wsuc ( R , A , X ) e. A ) |