Metamath Proof Explorer


Theorem xlimpnfliminf

Description: If a sequence of extended reals converges to +oo then its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf.m
|- ( ph -> M e. ZZ )
xlimpnfliminf.z
|- Z = ( ZZ>= ` M )
xlimpnfliminf.f
|- ( ph -> F : Z --> RR* )
xlimpnfliminf.c
|- ( ph -> F ~~>* +oo )
Assertion xlimpnfliminf
|- ( ph -> ( liminf ` F ) = +oo )

Proof

Step Hyp Ref Expression
1 xlimpnfliminf.m
 |-  ( ph -> M e. ZZ )
2 xlimpnfliminf.z
 |-  Z = ( ZZ>= ` M )
3 xlimpnfliminf.f
 |-  ( ph -> F : Z --> RR* )
4 xlimpnfliminf.c
 |-  ( ph -> F ~~>* +oo )
5 1 2 3 xlimpnfv
 |-  ( ph -> ( F ~~>* +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) )
6 4 5 mpbid
 |-  ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) )
7 nfcv
 |-  F/_ j F
8 7 1 2 3 liminfpnfuz
 |-  ( ph -> ( ( liminf ` F ) = +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) )
9 6 8 mpbird
 |-  ( ph -> ( liminf ` F ) = +oo )