Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnfliminf.m |
|- ( ph -> M e. ZZ ) |
2 |
|
xlimpnfliminf.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
xlimpnfliminf.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
xlimpnfliminf.c |
|- ( ph -> F ~~>* +oo ) |
5 |
1 2 3
|
xlimpnfv |
|- ( ph -> ( F ~~>* +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) ) |
6 |
4 5
|
mpbid |
|- ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) |
7 |
|
nfcv |
|- F/_ j F |
8 |
7 1 2 3
|
liminfpnfuz |
|- ( ph -> ( ( liminf ` F ) = +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) ) |
9 |
6 8
|
mpbird |
|- ( ph -> ( liminf ` F ) = +oo ) |