| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimpnfliminf.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | xlimpnfliminf.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | xlimpnfliminf.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 |  | xlimpnfliminf.c |  |-  ( ph -> F ~~>* +oo ) | 
						
							| 5 | 1 2 3 | xlimpnfv |  |-  ( ph -> ( F ~~>* +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) ) | 
						
							| 6 | 4 5 | mpbid |  |-  ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) | 
						
							| 7 |  | nfcv |  |-  F/_ j F | 
						
							| 8 | 7 1 2 3 | liminfpnfuz |  |-  ( ph -> ( ( liminf ` F ) = +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) ) | 
						
							| 9 | 6 8 | mpbird |  |-  ( ph -> ( liminf ` F ) = +oo ) |