Metamath Proof Explorer


Theorem xlimpnfliminf

Description: If a sequence of extended reals converges to +oo then its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf.m φ M
xlimpnfliminf.z Z = M
xlimpnfliminf.f φ F : Z *
xlimpnfliminf.c φ F * +∞
Assertion xlimpnfliminf φ lim inf F = +∞

Proof

Step Hyp Ref Expression
1 xlimpnfliminf.m φ M
2 xlimpnfliminf.z Z = M
3 xlimpnfliminf.f φ F : Z *
4 xlimpnfliminf.c φ F * +∞
5 1 2 3 xlimpnfv φ F * +∞ x k Z j k x F j
6 4 5 mpbid φ x k Z j k x F j
7 nfcv _ j F
8 7 1 2 3 liminfpnfuz φ lim inf F = +∞ x k Z j k x F j
9 6 8 mpbird φ lim inf F = +∞