Metamath Proof Explorer


Theorem xlimpnfliminf

Description: If a sequence of extended reals converges to +oo then its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf.m φM
xlimpnfliminf.z Z=M
xlimpnfliminf.f φF:Z*
xlimpnfliminf.c φF*+∞
Assertion xlimpnfliminf φlim infF=+∞

Proof

Step Hyp Ref Expression
1 xlimpnfliminf.m φM
2 xlimpnfliminf.z Z=M
3 xlimpnfliminf.f φF:Z*
4 xlimpnfliminf.c φF*+∞
5 1 2 3 xlimpnfv φF*+∞xkZjkxFj
6 4 5 mpbid φxkZjkxFj
7 nfcv _jF
8 7 1 2 3 liminfpnfuz φlim infF=+∞xkZjkxFj
9 6 8 mpbird φlim infF=+∞