Metamath Proof Explorer


Theorem xlimpnfliminf2

Description: A sequence of extended reals converges to +oo if and only if its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf2.m φ M
xlimpnfliminf2.z Z = M
xlimpnfliminf2.f φ F : Z *
Assertion xlimpnfliminf2 φ F * +∞ lim inf F = +∞

Proof

Step Hyp Ref Expression
1 xlimpnfliminf2.m φ M
2 xlimpnfliminf2.z Z = M
3 xlimpnfliminf2.f φ F : Z *
4 1 2 3 xlimpnfv φ F * +∞ x k Z j k x F j
5 nfcv _ j F
6 5 1 2 3 liminfpnfuz φ lim inf F = +∞ x k Z j k x F j
7 4 6 bitr4d φ F * +∞ lim inf F = +∞