Metamath Proof Explorer


Theorem xlimpnfliminf2

Description: A sequence of extended reals converges to +oo if and only if its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf2.m φM
xlimpnfliminf2.z Z=M
xlimpnfliminf2.f φF:Z*
Assertion xlimpnfliminf2 φF*+∞lim infF=+∞

Proof

Step Hyp Ref Expression
1 xlimpnfliminf2.m φM
2 xlimpnfliminf2.z Z=M
3 xlimpnfliminf2.f φF:Z*
4 1 2 3 xlimpnfv φF*+∞xkZjkxFj
5 nfcv _jF
6 5 1 2 3 liminfpnfuz φlim infF=+∞xkZjkxFj
7 4 6 bitr4d φF*+∞lim infF=+∞