Description: A sequence of extended reals converges to +oo if and only if its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xlimpnfliminf2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| xlimpnfliminf2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| xlimpnfliminf2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
| Assertion | xlimpnfliminf2 | ⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ( lim inf ‘ 𝐹 ) = +∞ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xlimpnfliminf2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | xlimpnfliminf2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | xlimpnfliminf2.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
| 4 | 1 2 3 | xlimpnfv | ⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) | 
| 5 | nfcv | ⊢ Ⅎ 𝑗 𝐹 | |
| 6 | 5 1 2 3 | liminfpnfuz | ⊢ ( 𝜑 → ( ( lim inf ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) | 
| 7 | 4 6 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ( lim inf ‘ 𝐹 ) = +∞ ) ) |