Step |
Hyp |
Ref |
Expression |
1 |
|
xlimliminflimsup.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
xlimliminflimsup.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
xlimliminflimsup.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → 𝑀 ∈ ℤ ) |
5 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
6 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → ( ~~>* ‘ 𝐹 ) ∈ ℝ ) |
7 |
|
xlimdm |
⊢ ( 𝐹 ∈ dom ~~>* ↔ 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
8 |
7
|
biimpi |
⊢ ( 𝐹 ∈ dom ~~>* → 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
10 |
4 2 5 6 9
|
xlimxrre |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
11 |
2
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → 𝑗 ∈ ℤ ) |
13 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) |
14 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) |
15 |
14
|
frexr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) |
16 |
9
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
17 |
2 3
|
fuzxrpmcn |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
18 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
19 |
11
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
20 |
18 19
|
xlimres |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) ) |
21 |
16 20
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) |
23 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( ~~>* ‘ 𝐹 ) ∈ ℝ ) |
24 |
12 13 15 22 23
|
xlimclimdm |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ∈ dom ⇝ ) |
25 |
12 13 14 24
|
climliminflimsupd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
26 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
27 |
17
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ∈ V ) |
29 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
30 |
26
|
ssd |
⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) |
31 |
29 30
|
eqsstrd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℤ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → dom 𝐹 ⊆ ℤ ) |
33 |
26 13 28 32
|
liminfresuz2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) = ( lim inf ‘ 𝐹 ) ) |
34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( lim inf ‘ 𝐹 ) = ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
35 |
34
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
36 |
26 13 28 32
|
limsupresuz2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) = ( lim sup ‘ 𝐹 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
38 |
37
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
39 |
25 35 38
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
40 |
10 39
|
rexlimddv2 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
41 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝜑 ) |
42 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ dom ~~>* ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
43 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom ~~>* ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( ~~>* ‘ 𝐹 ) = +∞ ) |
44 |
42 43
|
breqtrd |
⊢ ( ( 𝐹 ∈ dom ~~>* ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* +∞ ) |
45 |
44
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* +∞ ) |
46 |
17
|
liminfcld |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
48 |
17
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
50 |
1 2 3
|
liminflelimsupuz |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
52 |
49
|
pnfged |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim sup ‘ 𝐹 ) ≤ +∞ ) |
53 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → 𝑀 ∈ ℤ ) |
54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → 𝐹 ~~>* +∞ ) |
56 |
53 2 54 55
|
xlimpnfliminf |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim inf ‘ 𝐹 ) = +∞ ) |
57 |
52 56
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
58 |
47 49 51 57
|
xrletrid |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* +∞ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
59 |
41 45 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
61 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝜑 ) |
62 |
8
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) |
63 |
|
xlimcl |
⊢ ( 𝐹 ~~>* ( ~~>* ‘ 𝐹 ) → ( ~~>* ‘ 𝐹 ) ∈ ℝ* ) |
64 |
8 63
|
syl |
⊢ ( 𝐹 ∈ dom ~~>* → ( ~~>* ‘ 𝐹 ) ∈ ℝ* ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( ~~>* ‘ 𝐹 ) ∈ ℝ* ) |
66 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) |
67 |
|
neqne |
⊢ ( ¬ ( ~~>* ‘ 𝐹 ) = +∞ → ( ~~>* ‘ 𝐹 ) ≠ +∞ ) |
68 |
67
|
adantl |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( ~~>* ‘ 𝐹 ) ≠ +∞ ) |
69 |
65 66 68
|
xrnpnfmnf |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( ~~>* ‘ 𝐹 ) = -∞ ) |
70 |
62 69
|
breqtrd |
⊢ ( ( ( 𝐹 ∈ dom ~~>* ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* -∞ ) |
71 |
70
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* -∞ ) |
72 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
73 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
74 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
75 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → 𝑀 ∈ ℤ ) |
76 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → 𝐹 ~~>* -∞ ) |
78 |
75 2 76 77
|
xlimmnflimsup |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim sup ‘ 𝐹 ) = -∞ ) |
79 |
72
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → -∞ ≤ ( lim inf ‘ 𝐹 ) ) |
80 |
78 79
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
81 |
72 73 74 80
|
xrletrid |
⊢ ( ( 𝜑 ∧ 𝐹 ~~>* -∞ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
82 |
61 71 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) ∧ ¬ ( ~~>* ‘ 𝐹 ) = +∞ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
83 |
60 82
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) ∧ ¬ ( ~~>* ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
84 |
40 83
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ~~>* ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
85 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝐹 ∈ V ) |
86 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → -∞ ∈ ℝ* ) |
88 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → ( lim sup ‘ 𝐹 ) = -∞ ) |
89 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝑀 ∈ ℤ ) |
90 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
91 |
89 2 90
|
xlimmnflimsup2 |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → ( 𝐹 ~~>* -∞ ↔ ( lim sup ‘ 𝐹 ) = -∞ ) ) |
92 |
88 91
|
mpbird |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝐹 ~~>* -∞ ) |
93 |
85 87 92
|
breldmd |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝐹 ∈ dom ~~>* ) |
94 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) = -∞ ) → 𝐹 ∈ dom ~~>* ) |
95 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → 𝑀 ∈ ℤ ) |
96 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
97 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
98 |
97
|
renepnfd |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
99 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
100 |
99 97
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
101 |
100
|
renemnfd |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) ≠ -∞ ) |
102 |
95 2 96 98 101
|
liminflimsupxrre |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ∃ 𝑚 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) |
103 |
2
|
eluzelz2 |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) |
104 |
103
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → 𝑚 ∈ ℤ ) |
105 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑚 ) |
106 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) |
107 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) → 𝜑 ) |
108 |
|
simpl |
⊢ ( ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
109 |
|
simpr |
⊢ ( ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
110 |
108 109
|
eqeltrd |
⊢ ( ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
111 |
110
|
ad4ant23 |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
112 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
113 |
103
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℤ ) |
114 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → 𝐹 ∈ V ) |
115 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → dom 𝐹 ⊆ ℤ ) |
116 |
113 105 114 115
|
liminfresuz2 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim inf ‘ 𝐹 ) ) |
117 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
118 |
116 117
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ∈ ℝ ) |
119 |
107 111 112 118
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ∈ ℝ ) |
120 |
119
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ∈ ℝ ) |
121 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
122 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℤ ) |
123 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐹 ∈ V ) |
124 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom 𝐹 ⊆ ℤ ) |
125 |
122 105 123 124
|
liminfresuz2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim inf ‘ 𝐹 ) ) |
126 |
125
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim inf ‘ 𝐹 ) ) |
127 |
122 105 123 124
|
limsupresuz2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim sup ‘ 𝐹 ) ) |
128 |
127
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ 𝑚 ∈ 𝑍 ) → ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim sup ‘ 𝐹 ) ) |
129 |
121 126 128
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ∧ 𝑚 ∈ 𝑍 ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
130 |
129
|
ad5ant124 |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
131 |
104 105 106
|
climliminflimsup3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ∈ dom ⇝ ↔ ( ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ∈ ℝ ∧ ( lim inf ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) = ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) ) |
132 |
120 130 131
|
mpbir2and |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ∈ dom ⇝ ) |
133 |
104 105 106 132
|
dmclimxlim |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ∈ dom ~~>* ) |
134 |
17
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
135 |
134 104
|
xlimresdm |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → ( 𝐹 ∈ dom ~~>* ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) ∈ dom ~~>* ) ) |
136 |
133 135
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑚 ∈ 𝑍 ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) → 𝐹 ∈ dom ~~>* ) |
137 |
102 136
|
rexlimddv2 |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ∈ dom ~~>* ) |
138 |
137
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ∈ dom ~~>* ) |
139 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
140 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
141 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
143 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ≠ -∞ ) |
144 |
141 142 143
|
xrnmnfpnf |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) = +∞ ) |
145 |
144
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim sup ‘ 𝐹 ) = +∞ ) |
146 |
140 145
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( lim inf ‘ 𝐹 ) = +∞ ) |
147 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = +∞ ) → 𝐹 ∈ V ) |
148 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
149 |
148
|
a1i |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = +∞ ) → +∞ ∈ ℝ* ) |
150 |
1 2 3
|
xlimpnfliminf2 |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ( lim inf ‘ 𝐹 ) = +∞ ) ) |
151 |
150
|
biimpar |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = +∞ ) → 𝐹 ~~>* +∞ ) |
152 |
147 149 151
|
breldmd |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = +∞ ) → 𝐹 ∈ dom ~~>* ) |
153 |
152
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim inf ‘ 𝐹 ) = +∞ ) → 𝐹 ∈ dom ~~>* ) |
154 |
139 146 153
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) ∧ ¬ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ∈ dom ~~>* ) |
155 |
138 154
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ∧ ( lim sup ‘ 𝐹 ) ≠ -∞ ) → 𝐹 ∈ dom ~~>* ) |
156 |
94 155
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → 𝐹 ∈ dom ~~>* ) |
157 |
84 156
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |