| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimliminflimsup.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | xlimliminflimsup.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimliminflimsup.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 5 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  ( ~~>* ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 7 |  | xlimdm | ⊢ ( 𝐹  ∈  dom  ~~>*  ↔  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝐹  ∈  dom  ~~>*  →  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 10 | 4 2 5 6 9 | xlimxrre | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 11 | 2 | eluzelz2 | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  𝑗  ∈  ℤ ) | 
						
							| 13 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑗 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ ) | 
						
							| 15 | 14 | frexr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ* ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 17 | 2 3 | fuzxrpmcn | ⊢ ( 𝜑  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 18 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 19 | 11 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ℤ ) | 
						
							| 20 | 18 19 | xlimres | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ~~>* ( ~~>* ‘ 𝐹 )  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) ) | 
						
							| 21 | 16 20 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 23 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( ~~>* ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 24 | 12 13 15 22 23 | xlimclimdm | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) )  ∈  dom   ⇝  ) | 
						
							| 25 | 12 13 14 24 | climliminflimsupd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 26 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ℤ ) | 
						
							| 27 | 17 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐹  ∈  V ) | 
						
							| 29 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑍 ) | 
						
							| 30 | 26 | ssd | ⊢ ( 𝜑  →  𝑍  ⊆  ℤ ) | 
						
							| 31 | 29 30 | eqsstrd | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ℤ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  dom  𝐹  ⊆  ℤ ) | 
						
							| 33 | 26 13 28 32 | liminfresuz2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) )  =  ( lim inf ‘ 𝐹 ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( lim inf ‘ 𝐹 )  =  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 35 | 34 | ad5ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 36 | 26 13 28 32 | limsupresuz2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( lim sup ‘ 𝐹 )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 38 | 37 | ad5ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( lim sup ‘ 𝐹 )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 39 | 25 35 38 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 40 | 10 39 | rexlimddv2 | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 41 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝜑 ) | 
						
							| 42 | 8 | adantr | ⊢ ( ( 𝐹  ∈  dom  ~~>*  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝐹  ∈  dom  ~~>*  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( ~~>* ‘ 𝐹 )  =  +∞ ) | 
						
							| 44 | 42 43 | breqtrd | ⊢ ( ( 𝐹  ∈  dom  ~~>*  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* +∞ ) | 
						
							| 45 | 44 | adantll | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* +∞ ) | 
						
							| 46 | 17 | liminfcld | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 48 | 17 | limsupcld | ⊢ ( 𝜑  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 50 | 1 2 3 | liminflelimsupuz | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) ) | 
						
							| 52 | 49 | pnfged | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim sup ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 53 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  𝑀  ∈  ℤ ) | 
						
							| 54 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  𝐹 ~~>* +∞ ) | 
						
							| 56 | 53 2 54 55 | xlimpnfliminf | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim inf ‘ 𝐹 )  =  +∞ ) | 
						
							| 57 | 52 56 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) ) | 
						
							| 58 | 47 49 51 57 | xrletrid | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* +∞ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 59 | 41 45 58 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 60 | 59 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 61 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝜑 ) | 
						
							| 62 | 8 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* ( ~~>* ‘ 𝐹 ) ) | 
						
							| 63 |  | xlimcl | ⊢ ( 𝐹 ~~>* ( ~~>* ‘ 𝐹 )  →  ( ~~>* ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 64 | 8 63 | syl | ⊢ ( 𝐹  ∈  dom  ~~>*  →  ( ~~>* ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 65 | 64 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( ~~>* ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 66 |  | simplr | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 67 |  | neqne | ⊢ ( ¬  ( ~~>* ‘ 𝐹 )  =  +∞  →  ( ~~>* ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( ~~>* ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 69 | 65 66 68 | xrnpnfmnf | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( ~~>* ‘ 𝐹 )  =  -∞ ) | 
						
							| 70 | 62 69 | breqtrd | ⊢ ( ( ( 𝐹  ∈  dom  ~~>*  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* -∞ ) | 
						
							| 71 | 70 | adantlll | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* -∞ ) | 
						
							| 72 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 73 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 74 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) ) | 
						
							| 75 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  𝑀  ∈  ℤ ) | 
						
							| 76 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 77 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  𝐹 ~~>* -∞ ) | 
						
							| 78 | 75 2 76 77 | xlimmnflimsup | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim sup ‘ 𝐹 )  =  -∞ ) | 
						
							| 79 | 72 | mnfled | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  -∞  ≤  ( lim inf ‘ 𝐹 ) ) | 
						
							| 80 | 78 79 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) ) | 
						
							| 81 | 72 73 74 80 | xrletrid | ⊢ ( ( 𝜑  ∧  𝐹 ~~>* -∞ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 82 | 61 71 81 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  ∧  ¬  ( ~~>* ‘ 𝐹 )  =  +∞ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 83 | 60 82 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  ∧  ¬  ( ~~>* ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 84 | 40 83 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom  ~~>* )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 85 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝐹  ∈  V ) | 
						
							| 86 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 87 | 86 | a1i | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  -∞  ∈  ℝ* ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  ( lim sup ‘ 𝐹 )  =  -∞ ) | 
						
							| 89 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝑀  ∈  ℤ ) | 
						
							| 90 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 91 | 89 2 90 | xlimmnflimsup2 | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  ( 𝐹 ~~>* -∞  ↔  ( lim sup ‘ 𝐹 )  =  -∞ ) ) | 
						
							| 92 | 88 91 | mpbird | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝐹 ~~>* -∞ ) | 
						
							| 93 | 85 87 92 | breldmd | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 94 | 93 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  =  -∞ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 95 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 96 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 97 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 98 | 97 | renepnfd | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 100 | 99 97 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 101 | 100 | renemnfd | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  ≠  -∞ ) | 
						
							| 102 | 95 2 96 98 101 | liminflimsupxrre | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ∃ 𝑚  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 103 | 2 | eluzelz2 | ⊢ ( 𝑚  ∈  𝑍  →  𝑚  ∈  ℤ ) | 
						
							| 104 | 103 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  𝑚  ∈  ℤ ) | 
						
							| 105 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ 𝑚 ) | 
						
							| 106 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 107 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  →  𝜑 ) | 
						
							| 108 |  | simpl | ⊢ ( ( ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 110 | 108 109 | eqeltrd | ⊢ ( ( ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 111 | 110 | ad4ant23 | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 112 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  𝑍 ) | 
						
							| 113 | 103 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  ℤ ) | 
						
							| 114 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  𝐹  ∈  V ) | 
						
							| 115 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  dom  𝐹  ⊆  ℤ ) | 
						
							| 116 | 113 105 114 115 | liminfresuz2 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim inf ‘ 𝐹 ) ) | 
						
							| 117 |  | simp2 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 118 | 116 117 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 119 | 107 111 112 118 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 121 |  | simp2 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 122 | 103 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  ℤ ) | 
						
							| 123 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝐹  ∈  V ) | 
						
							| 124 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  dom  𝐹  ⊆  ℤ ) | 
						
							| 125 | 122 105 123 124 | liminfresuz2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim inf ‘ 𝐹 ) ) | 
						
							| 126 | 125 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim inf ‘ 𝐹 ) ) | 
						
							| 127 | 122 105 123 124 | limsupresuz2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 128 | 127 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  𝑚  ∈  𝑍 )  →  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 129 | 121 126 128 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  ∧  𝑚  ∈  𝑍 )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) ) ) | 
						
							| 130 | 129 | ad5ant124 | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) ) ) | 
						
							| 131 | 104 105 106 | climliminflimsup3 | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) )  ∈  dom   ⇝   ↔  ( ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  ∈  ℝ  ∧  ( lim inf ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) )  =  ( lim sup ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) ) ) ) ) | 
						
							| 132 | 120 130 131 | mpbir2and | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) )  ∈  dom   ⇝  ) | 
						
							| 133 | 104 105 106 132 | dmclimxlim | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) )  ∈  dom  ~~>* ) | 
						
							| 134 | 17 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  𝐹  ∈  ( ℝ*  ↑pm  ℂ ) ) | 
						
							| 135 | 134 104 | xlimresdm | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  ( 𝐹  ∈  dom  ~~>*  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) )  ∈  dom  ~~>* ) ) | 
						
							| 136 | 133 135 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  ∧  𝑚  ∈  𝑍 )  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑚 ) ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ℝ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 137 | 102 136 | rexlimddv2 | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 138 | 137 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 139 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) ) | 
						
							| 140 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) | 
						
							| 141 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 142 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 143 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  ≠  -∞ ) | 
						
							| 144 | 141 142 143 | xrnmnfpnf | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  =  +∞ ) | 
						
							| 145 | 144 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  =  +∞ ) | 
						
							| 146 | 140 145 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  ( lim inf ‘ 𝐹 )  =  +∞ ) | 
						
							| 147 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  +∞ )  →  𝐹  ∈  V ) | 
						
							| 148 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 149 | 148 | a1i | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 150 | 1 2 3 | xlimpnfliminf2 | ⊢ ( 𝜑  →  ( 𝐹 ~~>* +∞  ↔  ( lim inf ‘ 𝐹 )  =  +∞ ) ) | 
						
							| 151 | 150 | biimpar | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  +∞ )  →  𝐹 ~~>* +∞ ) | 
						
							| 152 | 147 149 151 | breldmd | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  +∞ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 153 | 152 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim inf ‘ 𝐹 )  =  +∞ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 154 | 139 146 153 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  ∧  ¬  ( lim sup ‘ 𝐹 )  ∈  ℝ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 155 | 138 154 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  ∧  ( lim sup ‘ 𝐹 )  ≠  -∞ )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 156 | 94 155 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  →  𝐹  ∈  dom  ~~>* ) | 
						
							| 157 | 84 156 | impbida | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ~~>*  ↔  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) ) |