Description: If a sequence of extended reals converges to +oo then its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimpnfliminf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
xlimpnfliminf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
xlimpnfliminf.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
xlimpnfliminf.c | ⊢ ( 𝜑 → 𝐹 ~~>* +∞ ) | ||
Assertion | xlimpnfliminf | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = +∞ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfliminf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
2 | xlimpnfliminf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | xlimpnfliminf.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
4 | xlimpnfliminf.c | ⊢ ( 𝜑 → 𝐹 ~~>* +∞ ) | |
5 | 1 2 3 | xlimpnfv | ⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
6 | 4 5 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
7 | nfcv | ⊢ Ⅎ 𝑗 𝐹 | |
8 | 7 1 2 3 | liminfpnfuz | ⊢ ( 𝜑 → ( ( lim inf ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
9 | 6 8 | mpbird | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = +∞ ) |