Metamath Proof Explorer


Theorem xlimpnfliminf

Description: If a sequence of extended reals converges to +oo then its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf.m ( 𝜑𝑀 ∈ ℤ )
xlimpnfliminf.z 𝑍 = ( ℤ𝑀 )
xlimpnfliminf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimpnfliminf.c ( 𝜑𝐹 ~~>* +∞ )
Assertion xlimpnfliminf ( 𝜑 → ( lim inf ‘ 𝐹 ) = +∞ )

Proof

Step Hyp Ref Expression
1 xlimpnfliminf.m ( 𝜑𝑀 ∈ ℤ )
2 xlimpnfliminf.z 𝑍 = ( ℤ𝑀 )
3 xlimpnfliminf.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 xlimpnfliminf.c ( 𝜑𝐹 ~~>* +∞ )
5 1 2 3 xlimpnfv ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) 𝑥 ≤ ( 𝐹𝑗 ) ) )
6 4 5 mpbid ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) 𝑥 ≤ ( 𝐹𝑗 ) )
7 nfcv 𝑗 𝐹
8 7 1 2 3 liminfpnfuz ( 𝜑 → ( ( lim inf ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) 𝑥 ≤ ( 𝐹𝑗 ) ) )
9 6 8 mpbird ( 𝜑 → ( lim inf ‘ 𝐹 ) = +∞ )