| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimliminflimsup.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | xlimliminflimsup.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | xlimliminflimsup.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 | 1 | ad2antrr |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> M e. ZZ ) | 
						
							| 5 | 3 | ad2antrr |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F : Z --> RR* ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( ~~>* ` F ) e. RR ) | 
						
							| 7 |  | xlimdm |  |-  ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) | 
						
							| 8 | 7 | biimpi |  |-  ( F e. dom ~~>* -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 10 | 4 2 5 6 9 | xlimxrre |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 11 | 2 | eluzelz2 |  |-  ( j e. Z -> j e. ZZ ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> j e. ZZ ) | 
						
							| 13 |  | eqid |  |-  ( ZZ>= ` j ) = ( ZZ>= ` j ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) | 
						
							| 15 | 14 | frexr |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 17 | 2 3 | fuzxrpmcn |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 18 | 17 | ad3antrrr |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 19 | 11 | adantl |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> j e. ZZ ) | 
						
							| 20 | 18 19 | xlimres |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F ~~>* ( ~~>* ` F ) <-> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) ) | 
						
							| 21 | 16 20 | mpbid |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) | 
						
							| 23 |  | simpllr |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ~~>* ` F ) e. RR ) | 
						
							| 24 | 12 13 15 22 23 | xlimclimdm |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) e. dom ~~> ) | 
						
							| 25 | 12 13 14 24 | climliminflimsupd |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) | 
						
							| 26 | 11 | adantl |  |-  ( ( ph /\ j e. Z ) -> j e. ZZ ) | 
						
							| 27 | 17 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ j e. Z ) -> F e. _V ) | 
						
							| 29 | 3 | fdmd |  |-  ( ph -> dom F = Z ) | 
						
							| 30 | 26 | ssd |  |-  ( ph -> Z C_ ZZ ) | 
						
							| 31 | 29 30 | eqsstrd |  |-  ( ph -> dom F C_ ZZ ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ j e. Z ) -> dom F C_ ZZ ) | 
						
							| 33 | 26 13 28 32 | liminfresuz2 |  |-  ( ( ph /\ j e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( liminf ` F ) ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ph /\ j e. Z ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) | 
						
							| 35 | 34 | ad5ant14 |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) | 
						
							| 36 | 26 13 28 32 | limsupresuz2 |  |-  ( ( ph /\ j e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` F ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ( ph /\ j e. Z ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) | 
						
							| 38 | 37 | ad5ant14 |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) | 
						
							| 39 | 25 35 38 | 3eqtr4d |  |-  ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 40 | 10 39 | rexlimddv2 |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 41 |  | simpll |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ph ) | 
						
							| 42 | 8 | adantr |  |-  ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 43 |  | simpr |  |-  ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = +oo ) | 
						
							| 44 | 42 43 | breqtrd |  |-  ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) | 
						
							| 45 | 44 | adantll |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) | 
						
							| 46 | 17 | liminfcld |  |-  ( ph -> ( liminf ` F ) e. RR* ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) e. RR* ) | 
						
							| 48 | 17 | limsupcld |  |-  ( ph -> ( limsup ` F ) e. RR* ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) e. RR* ) | 
						
							| 50 | 1 2 3 | liminflelimsupuz |  |-  ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) | 
						
							| 52 | 49 | pnfged |  |-  ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ +oo ) | 
						
							| 53 | 1 | adantr |  |-  ( ( ph /\ F ~~>* +oo ) -> M e. ZZ ) | 
						
							| 54 | 3 | adantr |  |-  ( ( ph /\ F ~~>* +oo ) -> F : Z --> RR* ) | 
						
							| 55 |  | simpr |  |-  ( ( ph /\ F ~~>* +oo ) -> F ~~>* +oo ) | 
						
							| 56 | 53 2 54 55 | xlimpnfliminf |  |-  ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = +oo ) | 
						
							| 57 | 52 56 | breqtrrd |  |-  ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) | 
						
							| 58 | 47 49 51 57 | xrletrid |  |-  ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 59 | 41 45 58 | syl2anc |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 60 | 59 | adantlr |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 61 |  | simplll |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ph ) | 
						
							| 62 | 8 | ad2antrr |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 63 |  | xlimcl |  |-  ( F ~~>* ( ~~>* ` F ) -> ( ~~>* ` F ) e. RR* ) | 
						
							| 64 | 8 63 | syl |  |-  ( F e. dom ~~>* -> ( ~~>* ` F ) e. RR* ) | 
						
							| 65 | 64 | ad2antrr |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) e. RR* ) | 
						
							| 66 |  | simplr |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> -. ( ~~>* ` F ) e. RR ) | 
						
							| 67 |  | neqne |  |-  ( -. ( ~~>* ` F ) = +oo -> ( ~~>* ` F ) =/= +oo ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) =/= +oo ) | 
						
							| 69 | 65 66 68 | xrnpnfmnf |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = -oo ) | 
						
							| 70 | 62 69 | breqtrd |  |-  ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) | 
						
							| 71 | 70 | adantlll |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) | 
						
							| 72 | 46 | adantr |  |-  ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) e. RR* ) | 
						
							| 73 | 48 | adantr |  |-  ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) e. RR* ) | 
						
							| 74 | 50 | adantr |  |-  ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) | 
						
							| 75 | 1 | adantr |  |-  ( ( ph /\ F ~~>* -oo ) -> M e. ZZ ) | 
						
							| 76 | 3 | adantr |  |-  ( ( ph /\ F ~~>* -oo ) -> F : Z --> RR* ) | 
						
							| 77 |  | simpr |  |-  ( ( ph /\ F ~~>* -oo ) -> F ~~>* -oo ) | 
						
							| 78 | 75 2 76 77 | xlimmnflimsup |  |-  ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) = -oo ) | 
						
							| 79 | 72 | mnfled |  |-  ( ( ph /\ F ~~>* -oo ) -> -oo <_ ( liminf ` F ) ) | 
						
							| 80 | 78 79 | eqbrtrd |  |-  ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) | 
						
							| 81 | 72 73 74 80 | xrletrid |  |-  ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 82 | 61 71 81 | syl2anc |  |-  ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 83 | 60 82 | pm2.61dan |  |-  ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 84 | 40 83 | pm2.61dan |  |-  ( ( ph /\ F e. dom ~~>* ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 85 | 27 | adantr |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. _V ) | 
						
							| 86 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 87 | 86 | a1i |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> -oo e. RR* ) | 
						
							| 88 |  | simpr |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> ( limsup ` F ) = -oo ) | 
						
							| 89 | 1 | adantr |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> M e. ZZ ) | 
						
							| 90 | 3 | adantr |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> F : Z --> RR* ) | 
						
							| 91 | 89 2 90 | xlimmnflimsup2 |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) ) | 
						
							| 92 | 88 91 | mpbird |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> F ~~>* -oo ) | 
						
							| 93 | 85 87 92 | breldmd |  |-  ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) | 
						
							| 94 | 93 | adantlr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) | 
						
							| 95 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> M e. ZZ ) | 
						
							| 96 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F : Z --> RR* ) | 
						
							| 97 |  | simpr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) | 
						
							| 98 | 97 | renepnfd |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= +oo ) | 
						
							| 99 |  | simplr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 100 | 99 97 | eqeltrd |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) | 
						
							| 101 | 100 | renemnfd |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) =/= -oo ) | 
						
							| 102 | 95 2 96 98 101 | liminflimsupxrre |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> E. m e. Z ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) | 
						
							| 103 | 2 | eluzelz2 |  |-  ( m e. Z -> m e. ZZ ) | 
						
							| 104 | 103 | ad2antlr |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> m e. ZZ ) | 
						
							| 105 |  | eqid |  |-  ( ZZ>= ` m ) = ( ZZ>= ` m ) | 
						
							| 106 |  | simpr |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) | 
						
							| 107 |  | simplll |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ph ) | 
						
							| 108 |  | simpl |  |-  ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 109 |  | simpr |  |-  ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) | 
						
							| 110 | 108 109 | eqeltrd |  |-  ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) | 
						
							| 111 | 110 | ad4ant23 |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` F ) e. RR ) | 
						
							| 112 |  | simpr |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> m e. Z ) | 
						
							| 113 | 103 | 3ad2ant3 |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> m e. ZZ ) | 
						
							| 114 | 27 | 3ad2ant1 |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> F e. _V ) | 
						
							| 115 | 31 | 3ad2ant1 |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> dom F C_ ZZ ) | 
						
							| 116 | 113 105 114 115 | liminfresuz2 |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) | 
						
							| 117 |  | simp2 |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` F ) e. RR ) | 
						
							| 118 | 116 117 | eqeltrd |  |-  ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) | 
						
							| 119 | 107 111 112 118 | syl3anc |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) | 
						
							| 121 |  | simp2 |  |-  ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 122 | 103 | adantl |  |-  ( ( ph /\ m e. Z ) -> m e. ZZ ) | 
						
							| 123 | 27 | adantr |  |-  ( ( ph /\ m e. Z ) -> F e. _V ) | 
						
							| 124 | 31 | adantr |  |-  ( ( ph /\ m e. Z ) -> dom F C_ ZZ ) | 
						
							| 125 | 122 105 123 124 | liminfresuz2 |  |-  ( ( ph /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) | 
						
							| 126 | 125 | 3adant2 |  |-  ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) | 
						
							| 127 | 122 105 123 124 | limsupresuz2 |  |-  ( ( ph /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) | 
						
							| 128 | 127 | 3adant2 |  |-  ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) | 
						
							| 129 | 121 126 128 | 3eqtr4d |  |-  ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) | 
						
							| 130 | 129 | ad5ant124 |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) | 
						
							| 131 | 104 105 106 | climliminflimsup3 |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( ( F |` ( ZZ>= ` m ) ) e. dom ~~> <-> ( ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR /\ ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) ) ) | 
						
							| 132 | 120 130 131 | mpbir2and |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~> ) | 
						
							| 133 | 104 105 106 132 | dmclimxlim |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) | 
						
							| 134 | 17 | ad4antr |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 135 | 134 104 | xlimresdm |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F e. dom ~~>* <-> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) ) | 
						
							| 136 | 133 135 | mpbird |  |-  ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. dom ~~>* ) | 
						
							| 137 | 102 136 | rexlimddv2 |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) | 
						
							| 138 | 137 | adantlr |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) | 
						
							| 139 |  | simpll |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) ) | 
						
							| 140 |  | simpllr |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) | 
						
							| 141 | 48 | ad2antrr |  |-  ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR* ) | 
						
							| 142 |  | simpr |  |-  ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> -. ( limsup ` F ) e. RR ) | 
						
							| 143 |  | simplr |  |-  ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= -oo ) | 
						
							| 144 | 141 142 143 | xrnmnfpnf |  |-  ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) | 
						
							| 145 | 144 | adantllr |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) | 
						
							| 146 | 140 145 | eqtrd |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = +oo ) | 
						
							| 147 | 27 | adantr |  |-  ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. _V ) | 
						
							| 148 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 149 | 148 | a1i |  |-  ( ( ph /\ ( liminf ` F ) = +oo ) -> +oo e. RR* ) | 
						
							| 150 | 1 2 3 | xlimpnfliminf2 |  |-  ( ph -> ( F ~~>* +oo <-> ( liminf ` F ) = +oo ) ) | 
						
							| 151 | 150 | biimpar |  |-  ( ( ph /\ ( liminf ` F ) = +oo ) -> F ~~>* +oo ) | 
						
							| 152 | 147 149 151 | breldmd |  |-  ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) | 
						
							| 153 | 152 | adantlr |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) | 
						
							| 154 | 139 146 153 | syl2anc |  |-  ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) | 
						
							| 155 | 138 154 | pm2.61dan |  |-  ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) -> F e. dom ~~>* ) | 
						
							| 156 | 94 155 | pm2.61dane |  |-  ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> F e. dom ~~>* ) | 
						
							| 157 | 84 156 | impbida |  |-  ( ph -> ( F e. dom ~~>* <-> ( liminf ` F ) = ( limsup ` F ) ) ) |