| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlimliminflimsup.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
xlimliminflimsup.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
xlimliminflimsup.f |
|- ( ph -> F : Z --> RR* ) |
| 4 |
1
|
ad2antrr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> M e. ZZ ) |
| 5 |
3
|
ad2antrr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F : Z --> RR* ) |
| 6 |
|
simpr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( ~~>* ` F ) e. RR ) |
| 7 |
|
xlimdm |
|- ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) |
| 8 |
7
|
biimpi |
|- ( F e. dom ~~>* -> F ~~>* ( ~~>* ` F ) ) |
| 9 |
8
|
ad2antlr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F ~~>* ( ~~>* ` F ) ) |
| 10 |
4 2 5 6 9
|
xlimxrre |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
| 11 |
2
|
eluzelz2 |
|- ( j e. Z -> j e. ZZ ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> j e. ZZ ) |
| 13 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
| 14 |
|
simpr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
| 15 |
14
|
frexr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) |
| 16 |
9
|
adantr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F ~~>* ( ~~>* ` F ) ) |
| 17 |
2 3
|
fuzxrpmcn |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
| 18 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F e. ( RR* ^pm CC ) ) |
| 19 |
11
|
adantl |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> j e. ZZ ) |
| 20 |
18 19
|
xlimres |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F ~~>* ( ~~>* ` F ) <-> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) ) |
| 21 |
16 20
|
mpbid |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) |
| 23 |
|
simpllr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ~~>* ` F ) e. RR ) |
| 24 |
12 13 15 22 23
|
xlimclimdm |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) e. dom ~~> ) |
| 25 |
12 13 14 24
|
climliminflimsupd |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
| 26 |
11
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
| 27 |
17
|
elexd |
|- ( ph -> F e. _V ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ j e. Z ) -> F e. _V ) |
| 29 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
| 30 |
26
|
ssd |
|- ( ph -> Z C_ ZZ ) |
| 31 |
29 30
|
eqsstrd |
|- ( ph -> dom F C_ ZZ ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ j e. Z ) -> dom F C_ ZZ ) |
| 33 |
26 13 28 32
|
liminfresuz2 |
|- ( ( ph /\ j e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( liminf ` F ) ) |
| 34 |
33
|
eqcomd |
|- ( ( ph /\ j e. Z ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) |
| 35 |
34
|
ad5ant14 |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) |
| 36 |
26 13 28 32
|
limsupresuz2 |
|- ( ( ph /\ j e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` F ) ) |
| 37 |
36
|
eqcomd |
|- ( ( ph /\ j e. Z ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
| 38 |
37
|
ad5ant14 |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
| 39 |
25 35 38
|
3eqtr4d |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 40 |
10 39
|
rexlimddv2 |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 41 |
|
simpll |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ph ) |
| 42 |
8
|
adantr |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) |
| 43 |
|
simpr |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = +oo ) |
| 44 |
42 43
|
breqtrd |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) |
| 45 |
44
|
adantll |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) |
| 46 |
17
|
liminfcld |
|- ( ph -> ( liminf ` F ) e. RR* ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) e. RR* ) |
| 48 |
17
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) e. RR* ) |
| 50 |
1 2 3
|
liminflelimsupuz |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 52 |
49
|
pnfged |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ +oo ) |
| 53 |
1
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> M e. ZZ ) |
| 54 |
3
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> F : Z --> RR* ) |
| 55 |
|
simpr |
|- ( ( ph /\ F ~~>* +oo ) -> F ~~>* +oo ) |
| 56 |
53 2 54 55
|
xlimpnfliminf |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = +oo ) |
| 57 |
52 56
|
breqtrrd |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 58 |
47 49 51 57
|
xrletrid |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 59 |
41 45 58
|
syl2anc |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 60 |
59
|
adantlr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 61 |
|
simplll |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ph ) |
| 62 |
8
|
ad2antrr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) |
| 63 |
|
xlimcl |
|- ( F ~~>* ( ~~>* ` F ) -> ( ~~>* ` F ) e. RR* ) |
| 64 |
8 63
|
syl |
|- ( F e. dom ~~>* -> ( ~~>* ` F ) e. RR* ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) e. RR* ) |
| 66 |
|
simplr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> -. ( ~~>* ` F ) e. RR ) |
| 67 |
|
neqne |
|- ( -. ( ~~>* ` F ) = +oo -> ( ~~>* ` F ) =/= +oo ) |
| 68 |
67
|
adantl |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) =/= +oo ) |
| 69 |
65 66 68
|
xrnpnfmnf |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = -oo ) |
| 70 |
62 69
|
breqtrd |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) |
| 71 |
70
|
adantlll |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) |
| 72 |
46
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) e. RR* ) |
| 73 |
48
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) e. RR* ) |
| 74 |
50
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 75 |
1
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> M e. ZZ ) |
| 76 |
3
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> F : Z --> RR* ) |
| 77 |
|
simpr |
|- ( ( ph /\ F ~~>* -oo ) -> F ~~>* -oo ) |
| 78 |
75 2 76 77
|
xlimmnflimsup |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) = -oo ) |
| 79 |
72
|
mnfled |
|- ( ( ph /\ F ~~>* -oo ) -> -oo <_ ( liminf ` F ) ) |
| 80 |
78 79
|
eqbrtrd |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 81 |
72 73 74 80
|
xrletrid |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 82 |
61 71 81
|
syl2anc |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 83 |
60 82
|
pm2.61dan |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 84 |
40 83
|
pm2.61dan |
|- ( ( ph /\ F e. dom ~~>* ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 85 |
27
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. _V ) |
| 86 |
|
mnfxr |
|- -oo e. RR* |
| 87 |
86
|
a1i |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> -oo e. RR* ) |
| 88 |
|
simpr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> ( limsup ` F ) = -oo ) |
| 89 |
1
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> M e. ZZ ) |
| 90 |
3
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F : Z --> RR* ) |
| 91 |
89 2 90
|
xlimmnflimsup2 |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) ) |
| 92 |
88 91
|
mpbird |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F ~~>* -oo ) |
| 93 |
85 87 92
|
breldmd |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) |
| 94 |
93
|
adantlr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) |
| 95 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> M e. ZZ ) |
| 96 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F : Z --> RR* ) |
| 97 |
|
simpr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) |
| 98 |
97
|
renepnfd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= +oo ) |
| 99 |
|
simplr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 100 |
99 97
|
eqeltrd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) |
| 101 |
100
|
renemnfd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) =/= -oo ) |
| 102 |
95 2 96 98 101
|
liminflimsupxrre |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> E. m e. Z ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) |
| 103 |
2
|
eluzelz2 |
|- ( m e. Z -> m e. ZZ ) |
| 104 |
103
|
ad2antlr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> m e. ZZ ) |
| 105 |
|
eqid |
|- ( ZZ>= ` m ) = ( ZZ>= ` m ) |
| 106 |
|
simpr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) |
| 107 |
|
simplll |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ph ) |
| 108 |
|
simpl |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 109 |
|
simpr |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) |
| 110 |
108 109
|
eqeltrd |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) |
| 111 |
110
|
ad4ant23 |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` F ) e. RR ) |
| 112 |
|
simpr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> m e. Z ) |
| 113 |
103
|
3ad2ant3 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> m e. ZZ ) |
| 114 |
27
|
3ad2ant1 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> F e. _V ) |
| 115 |
31
|
3ad2ant1 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> dom F C_ ZZ ) |
| 116 |
113 105 114 115
|
liminfresuz2 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
| 117 |
|
simp2 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` F ) e. RR ) |
| 118 |
116 117
|
eqeltrd |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
| 119 |
107 111 112 118
|
syl3anc |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
| 120 |
119
|
adantr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
| 121 |
|
simp2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 122 |
103
|
adantl |
|- ( ( ph /\ m e. Z ) -> m e. ZZ ) |
| 123 |
27
|
adantr |
|- ( ( ph /\ m e. Z ) -> F e. _V ) |
| 124 |
31
|
adantr |
|- ( ( ph /\ m e. Z ) -> dom F C_ ZZ ) |
| 125 |
122 105 123 124
|
liminfresuz2 |
|- ( ( ph /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
| 126 |
125
|
3adant2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
| 127 |
122 105 123 124
|
limsupresuz2 |
|- ( ( ph /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) |
| 128 |
127
|
3adant2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) |
| 129 |
121 126 128
|
3eqtr4d |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) |
| 130 |
129
|
ad5ant124 |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) |
| 131 |
104 105 106
|
climliminflimsup3 |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( ( F |` ( ZZ>= ` m ) ) e. dom ~~> <-> ( ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR /\ ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) ) ) |
| 132 |
120 130 131
|
mpbir2and |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~> ) |
| 133 |
104 105 106 132
|
dmclimxlim |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) |
| 134 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. ( RR* ^pm CC ) ) |
| 135 |
134 104
|
xlimresdm |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F e. dom ~~>* <-> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) ) |
| 136 |
133 135
|
mpbird |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. dom ~~>* ) |
| 137 |
102 136
|
rexlimddv2 |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
| 138 |
137
|
adantlr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
| 139 |
|
simpll |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) ) |
| 140 |
|
simpllr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 141 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR* ) |
| 142 |
|
simpr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> -. ( limsup ` F ) e. RR ) |
| 143 |
|
simplr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= -oo ) |
| 144 |
141 142 143
|
xrnmnfpnf |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) |
| 145 |
144
|
adantllr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) |
| 146 |
140 145
|
eqtrd |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = +oo ) |
| 147 |
27
|
adantr |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. _V ) |
| 148 |
|
pnfxr |
|- +oo e. RR* |
| 149 |
148
|
a1i |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> +oo e. RR* ) |
| 150 |
1 2 3
|
xlimpnfliminf2 |
|- ( ph -> ( F ~~>* +oo <-> ( liminf ` F ) = +oo ) ) |
| 151 |
150
|
biimpar |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F ~~>* +oo ) |
| 152 |
147 149 151
|
breldmd |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) |
| 153 |
152
|
adantlr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) |
| 154 |
139 146 153
|
syl2anc |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
| 155 |
138 154
|
pm2.61dan |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) -> F e. dom ~~>* ) |
| 156 |
94 155
|
pm2.61dane |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> F e. dom ~~>* ) |
| 157 |
84 156
|
impbida |
|- ( ph -> ( F e. dom ~~>* <-> ( liminf ` F ) = ( limsup ` F ) ) ) |