Step |
Hyp |
Ref |
Expression |
1 |
|
xlimliminflimsup.m |
|- ( ph -> M e. ZZ ) |
2 |
|
xlimliminflimsup.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
xlimliminflimsup.f |
|- ( ph -> F : Z --> RR* ) |
4 |
1
|
ad2antrr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> M e. ZZ ) |
5 |
3
|
ad2antrr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F : Z --> RR* ) |
6 |
|
simpr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( ~~>* ` F ) e. RR ) |
7 |
|
xlimdm |
|- ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) |
8 |
7
|
biimpi |
|- ( F e. dom ~~>* -> F ~~>* ( ~~>* ` F ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> F ~~>* ( ~~>* ` F ) ) |
10 |
4 2 5 6 9
|
xlimxrre |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
11 |
2
|
eluzelz2 |
|- ( j e. Z -> j e. ZZ ) |
12 |
11
|
ad2antlr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> j e. ZZ ) |
13 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
14 |
|
simpr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) |
15 |
14
|
frexr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) |
16 |
9
|
adantr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F ~~>* ( ~~>* ` F ) ) |
17 |
2 3
|
fuzxrpmcn |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
18 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> F e. ( RR* ^pm CC ) ) |
19 |
11
|
adantl |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> j e. ZZ ) |
20 |
18 19
|
xlimres |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F ~~>* ( ~~>* ` F ) <-> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) ) |
21 |
16 20
|
mpbid |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) |
22 |
21
|
adantr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) ~~>* ( ~~>* ` F ) ) |
23 |
|
simpllr |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( ~~>* ` F ) e. RR ) |
24 |
12 13 15 22 23
|
xlimclimdm |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( F |` ( ZZ>= ` j ) ) e. dom ~~> ) |
25 |
12 13 14 24
|
climliminflimsupd |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
26 |
11
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
27 |
17
|
elexd |
|- ( ph -> F e. _V ) |
28 |
27
|
adantr |
|- ( ( ph /\ j e. Z ) -> F e. _V ) |
29 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
30 |
26
|
ssd |
|- ( ph -> Z C_ ZZ ) |
31 |
29 30
|
eqsstrd |
|- ( ph -> dom F C_ ZZ ) |
32 |
31
|
adantr |
|- ( ( ph /\ j e. Z ) -> dom F C_ ZZ ) |
33 |
26 13 28 32
|
liminfresuz2 |
|- ( ( ph /\ j e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` j ) ) ) = ( liminf ` F ) ) |
34 |
33
|
eqcomd |
|- ( ( ph /\ j e. Z ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) |
35 |
34
|
ad5ant14 |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( liminf ` ( F |` ( ZZ>= ` j ) ) ) ) |
36 |
26 13 28 32
|
limsupresuz2 |
|- ( ( ph /\ j e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` j ) ) ) = ( limsup ` F ) ) |
37 |
36
|
eqcomd |
|- ( ( ph /\ j e. Z ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
38 |
37
|
ad5ant14 |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( limsup ` F ) = ( limsup ` ( F |` ( ZZ>= ` j ) ) ) ) |
39 |
25 35 38
|
3eqtr4d |
|- ( ( ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
40 |
10 39
|
rexlimddv2 |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
41 |
|
simpll |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ph ) |
42 |
8
|
adantr |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) |
43 |
|
simpr |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = +oo ) |
44 |
42 43
|
breqtrd |
|- ( ( F e. dom ~~>* /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) |
45 |
44
|
adantll |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> F ~~>* +oo ) |
46 |
17
|
liminfcld |
|- ( ph -> ( liminf ` F ) e. RR* ) |
47 |
46
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) e. RR* ) |
48 |
17
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
49 |
48
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) e. RR* ) |
50 |
1 2 3
|
liminflelimsupuz |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
52 |
49
|
pnfged |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ +oo ) |
53 |
1
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> M e. ZZ ) |
54 |
3
|
adantr |
|- ( ( ph /\ F ~~>* +oo ) -> F : Z --> RR* ) |
55 |
|
simpr |
|- ( ( ph /\ F ~~>* +oo ) -> F ~~>* +oo ) |
56 |
53 2 54 55
|
xlimpnfliminf |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = +oo ) |
57 |
52 56
|
breqtrrd |
|- ( ( ph /\ F ~~>* +oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
58 |
47 49 51 57
|
xrletrid |
|- ( ( ph /\ F ~~>* +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
59 |
41 45 58
|
syl2anc |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
60 |
59
|
adantlr |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
61 |
|
simplll |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ph ) |
62 |
8
|
ad2antrr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* ( ~~>* ` F ) ) |
63 |
|
xlimcl |
|- ( F ~~>* ( ~~>* ` F ) -> ( ~~>* ` F ) e. RR* ) |
64 |
8 63
|
syl |
|- ( F e. dom ~~>* -> ( ~~>* ` F ) e. RR* ) |
65 |
64
|
ad2antrr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) e. RR* ) |
66 |
|
simplr |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> -. ( ~~>* ` F ) e. RR ) |
67 |
|
neqne |
|- ( -. ( ~~>* ` F ) = +oo -> ( ~~>* ` F ) =/= +oo ) |
68 |
67
|
adantl |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) =/= +oo ) |
69 |
65 66 68
|
xrnpnfmnf |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( ~~>* ` F ) = -oo ) |
70 |
62 69
|
breqtrd |
|- ( ( ( F e. dom ~~>* /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) |
71 |
70
|
adantlll |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> F ~~>* -oo ) |
72 |
46
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) e. RR* ) |
73 |
48
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) e. RR* ) |
74 |
50
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
75 |
1
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> M e. ZZ ) |
76 |
3
|
adantr |
|- ( ( ph /\ F ~~>* -oo ) -> F : Z --> RR* ) |
77 |
|
simpr |
|- ( ( ph /\ F ~~>* -oo ) -> F ~~>* -oo ) |
78 |
75 2 76 77
|
xlimmnflimsup |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) = -oo ) |
79 |
72
|
mnfled |
|- ( ( ph /\ F ~~>* -oo ) -> -oo <_ ( liminf ` F ) ) |
80 |
78 79
|
eqbrtrd |
|- ( ( ph /\ F ~~>* -oo ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
81 |
72 73 74 80
|
xrletrid |
|- ( ( ph /\ F ~~>* -oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
82 |
61 71 81
|
syl2anc |
|- ( ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) /\ -. ( ~~>* ` F ) = +oo ) -> ( liminf ` F ) = ( limsup ` F ) ) |
83 |
60 82
|
pm2.61dan |
|- ( ( ( ph /\ F e. dom ~~>* ) /\ -. ( ~~>* ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
84 |
40 83
|
pm2.61dan |
|- ( ( ph /\ F e. dom ~~>* ) -> ( liminf ` F ) = ( limsup ` F ) ) |
85 |
27
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. _V ) |
86 |
|
mnfxr |
|- -oo e. RR* |
87 |
86
|
a1i |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> -oo e. RR* ) |
88 |
|
simpr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> ( limsup ` F ) = -oo ) |
89 |
1
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> M e. ZZ ) |
90 |
3
|
adantr |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F : Z --> RR* ) |
91 |
89 2 90
|
xlimmnflimsup2 |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) ) |
92 |
88 91
|
mpbird |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F ~~>* -oo ) |
93 |
85 87 92
|
breldmd |
|- ( ( ph /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) |
94 |
93
|
adantlr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) = -oo ) -> F e. dom ~~>* ) |
95 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> M e. ZZ ) |
96 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F : Z --> RR* ) |
97 |
|
simpr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) |
98 |
97
|
renepnfd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= +oo ) |
99 |
|
simplr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
100 |
99 97
|
eqeltrd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) |
101 |
100
|
renemnfd |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) =/= -oo ) |
102 |
95 2 96 98 101
|
liminflimsupxrre |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> E. m e. Z ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) |
103 |
2
|
eluzelz2 |
|- ( m e. Z -> m e. ZZ ) |
104 |
103
|
ad2antlr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> m e. ZZ ) |
105 |
|
eqid |
|- ( ZZ>= ` m ) = ( ZZ>= ` m ) |
106 |
|
simpr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) |
107 |
|
simplll |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ph ) |
108 |
|
simpl |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
109 |
|
simpr |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR ) |
110 |
108 109
|
eqeltrd |
|- ( ( ( liminf ` F ) = ( limsup ` F ) /\ ( limsup ` F ) e. RR ) -> ( liminf ` F ) e. RR ) |
111 |
110
|
ad4ant23 |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` F ) e. RR ) |
112 |
|
simpr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> m e. Z ) |
113 |
103
|
3ad2ant3 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> m e. ZZ ) |
114 |
27
|
3ad2ant1 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> F e. _V ) |
115 |
31
|
3ad2ant1 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> dom F C_ ZZ ) |
116 |
113 105 114 115
|
liminfresuz2 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
117 |
|
simp2 |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` F ) e. RR ) |
118 |
116 117
|
eqeltrd |
|- ( ( ph /\ ( liminf ` F ) e. RR /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
119 |
107 111 112 118
|
syl3anc |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
120 |
119
|
adantr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR ) |
121 |
|
simp2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` F ) = ( limsup ` F ) ) |
122 |
103
|
adantl |
|- ( ( ph /\ m e. Z ) -> m e. ZZ ) |
123 |
27
|
adantr |
|- ( ( ph /\ m e. Z ) -> F e. _V ) |
124 |
31
|
adantr |
|- ( ( ph /\ m e. Z ) -> dom F C_ ZZ ) |
125 |
122 105 123 124
|
liminfresuz2 |
|- ( ( ph /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
126 |
125
|
3adant2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( liminf ` F ) ) |
127 |
122 105 123 124
|
limsupresuz2 |
|- ( ( ph /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) |
128 |
127
|
3adant2 |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( limsup ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` F ) ) |
129 |
121 126 128
|
3eqtr4d |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) /\ m e. Z ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) |
130 |
129
|
ad5ant124 |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) |
131 |
104 105 106
|
climliminflimsup3 |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( ( F |` ( ZZ>= ` m ) ) e. dom ~~> <-> ( ( liminf ` ( F |` ( ZZ>= ` m ) ) ) e. RR /\ ( liminf ` ( F |` ( ZZ>= ` m ) ) ) = ( limsup ` ( F |` ( ZZ>= ` m ) ) ) ) ) ) |
132 |
120 130 131
|
mpbir2and |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~> ) |
133 |
104 105 106 132
|
dmclimxlim |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) |
134 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. ( RR* ^pm CC ) ) |
135 |
134 104
|
xlimresdm |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> ( F e. dom ~~>* <-> ( F |` ( ZZ>= ` m ) ) e. dom ~~>* ) ) |
136 |
133 135
|
mpbird |
|- ( ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) /\ m e. Z ) /\ ( F |` ( ZZ>= ` m ) ) : ( ZZ>= ` m ) --> RR ) -> F e. dom ~~>* ) |
137 |
102 136
|
rexlimddv2 |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
138 |
137
|
adantlr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
139 |
|
simpll |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) ) |
140 |
|
simpllr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = ( limsup ` F ) ) |
141 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) e. RR* ) |
142 |
|
simpr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> -. ( limsup ` F ) e. RR ) |
143 |
|
simplr |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) =/= -oo ) |
144 |
141 142 143
|
xrnmnfpnf |
|- ( ( ( ph /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) |
145 |
144
|
adantllr |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( limsup ` F ) = +oo ) |
146 |
140 145
|
eqtrd |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> ( liminf ` F ) = +oo ) |
147 |
27
|
adantr |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. _V ) |
148 |
|
pnfxr |
|- +oo e. RR* |
149 |
148
|
a1i |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> +oo e. RR* ) |
150 |
1 2 3
|
xlimpnfliminf2 |
|- ( ph -> ( F ~~>* +oo <-> ( liminf ` F ) = +oo ) ) |
151 |
150
|
biimpar |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F ~~>* +oo ) |
152 |
147 149 151
|
breldmd |
|- ( ( ph /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) |
153 |
152
|
adantlr |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( liminf ` F ) = +oo ) -> F e. dom ~~>* ) |
154 |
139 146 153
|
syl2anc |
|- ( ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) /\ -. ( limsup ` F ) e. RR ) -> F e. dom ~~>* ) |
155 |
138 154
|
pm2.61dan |
|- ( ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) /\ ( limsup ` F ) =/= -oo ) -> F e. dom ~~>* ) |
156 |
94 155
|
pm2.61dane |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> F e. dom ~~>* ) |
157 |
84 156
|
impbida |
|- ( ph -> ( F e. dom ~~>* <-> ( liminf ` F ) = ( limsup ` F ) ) ) |