Metamath Proof Explorer


Theorem xlimlimsupleliminf

Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)

Ref Expression
Hypotheses xlimlimsupleliminf.1
|- ( ph -> M e. ZZ )
xlimlimsupleliminf.2
|- Z = ( ZZ>= ` M )
xlimlimsupleliminf.3
|- ( ph -> F : Z --> RR* )
Assertion xlimlimsupleliminf
|- ( ph -> ( F e. dom ~~>* <-> ( limsup ` F ) <_ ( liminf ` F ) ) )

Proof

Step Hyp Ref Expression
1 xlimlimsupleliminf.1
 |-  ( ph -> M e. ZZ )
2 xlimlimsupleliminf.2
 |-  Z = ( ZZ>= ` M )
3 xlimlimsupleliminf.3
 |-  ( ph -> F : Z --> RR* )
4 1 2 3 xlimliminflimsup
 |-  ( ph -> ( F e. dom ~~>* <-> ( liminf ` F ) = ( limsup ` F ) ) )
5 1 2 3 liminfgelimsupuz
 |-  ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) )
6 4 5 bitr4d
 |-  ( ph -> ( F e. dom ~~>* <-> ( limsup ` F ) <_ ( liminf ` F ) ) )