Metamath Proof Explorer


Theorem xlimlimsupleliminf

Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)

Ref Expression
Hypotheses xlimlimsupleliminf.1 φ M
xlimlimsupleliminf.2 Z = M
xlimlimsupleliminf.3 φ F : Z *
Assertion xlimlimsupleliminf φ F dom * lim sup F lim inf F

Proof

Step Hyp Ref Expression
1 xlimlimsupleliminf.1 φ M
2 xlimlimsupleliminf.2 Z = M
3 xlimlimsupleliminf.3 φ F : Z *
4 1 2 3 xlimliminflimsup φ F dom * lim inf F = lim sup F
5 1 2 3 liminfgelimsupuz φ lim sup F lim inf F lim inf F = lim sup F
6 4 5 bitr4d φ F dom * lim sup F lim inf F