Metamath Proof Explorer


Theorem xlimlimsupleliminf

Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)

Ref Expression
Hypotheses xlimlimsupleliminf.1 ( 𝜑𝑀 ∈ ℤ )
xlimlimsupleliminf.2 𝑍 = ( ℤ𝑀 )
xlimlimsupleliminf.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion xlimlimsupleliminf ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 xlimlimsupleliminf.1 ( 𝜑𝑀 ∈ ℤ )
2 xlimlimsupleliminf.2 𝑍 = ( ℤ𝑀 )
3 xlimlimsupleliminf.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 1 2 3 xlimliminflimsup ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) )
5 1 2 3 liminfgelimsupuz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) )
6 4 5 bitr4d ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) )