Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimlimsupleliminf.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
xlimlimsupleliminf.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
xlimlimsupleliminf.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
Assertion | xlimlimsupleliminf | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimlimsupleliminf.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
2 | xlimlimsupleliminf.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | xlimlimsupleliminf.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
4 | 1 2 3 | xlimliminflimsup | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
5 | 1 2 3 | liminfgelimsupuz | ⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
6 | 4 5 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |