Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xlimlimsupleliminf.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| xlimlimsupleliminf.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| xlimlimsupleliminf.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
| Assertion | xlimlimsupleliminf | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimlimsupleliminf.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | xlimlimsupleliminf.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | xlimlimsupleliminf.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
| 4 | 1 2 3 | xlimliminflimsup | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
| 5 | 1 2 3 | liminfgelimsupuz | ⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
| 6 | 4 5 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ~~>* ↔ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |