| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimresdm.1 |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 2 |  | xlimresdm.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | xlimrel |  |-  Rel ~~>* | 
						
							| 4 |  | xlimdm |  |-  ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( ph /\ F e. dom ~~>* ) -> F ~~>* ( ~~>* ` F ) ) | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ F e. dom ~~>* ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ F e. dom ~~>* ) -> M e. ZZ ) | 
						
							| 9 | 7 8 | xlimres |  |-  ( ( ph /\ F e. dom ~~>* ) -> ( F ~~>* ( ~~>* ` F ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) ) | 
						
							| 10 | 6 9 | mpbid |  |-  ( ( ph /\ F e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) | 
						
							| 11 |  | releldm |  |-  ( ( Rel ~~>* /\ ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) | 
						
							| 12 | 3 10 11 | sylancr |  |-  ( ( ph /\ F e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) | 
						
							| 13 |  | xlimdm |  |-  ( ( F |` ( ZZ>= ` M ) ) e. dom ~~>* <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 14 | 13 | biimpi |  |-  ( ( F |` ( ZZ>= ` M ) ) e. dom ~~>* -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 16 | 1 2 | xlimres |  |-  ( ph -> ( F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> ( F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) ) | 
						
							| 18 | 15 17 | mpbird |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 19 |  | releldm |  |-  ( ( Rel ~~>* /\ F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) -> F e. dom ~~>* ) | 
						
							| 20 | 3 18 19 | sylancr |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> F e. dom ~~>* ) | 
						
							| 21 | 12 20 | impbida |  |-  ( ph -> ( F e. dom ~~>* <-> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) ) |