Step |
Hyp |
Ref |
Expression |
1 |
|
xlimresdm.1 |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
2 |
|
xlimresdm.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
xlimrel |
|- Rel ~~>* |
4 |
|
xlimdm |
|- ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) |
5 |
4
|
a1i |
|- ( ph -> ( F e. dom ~~>* <-> F ~~>* ( ~~>* ` F ) ) ) |
6 |
5
|
biimpa |
|- ( ( ph /\ F e. dom ~~>* ) -> F ~~>* ( ~~>* ` F ) ) |
7 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~>* ) -> F e. ( RR* ^pm CC ) ) |
8 |
2
|
adantr |
|- ( ( ph /\ F e. dom ~~>* ) -> M e. ZZ ) |
9 |
7 8
|
xlimres |
|- ( ( ph /\ F e. dom ~~>* ) -> ( F ~~>* ( ~~>* ` F ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) ) |
10 |
6 9
|
mpbid |
|- ( ( ph /\ F e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) |
11 |
|
releldm |
|- ( ( Rel ~~>* /\ ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` F ) ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) |
12 |
3 10 11
|
sylancr |
|- ( ( ph /\ F e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) |
13 |
|
xlimdm |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~>* <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) |
14 |
13
|
biimpi |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~>* -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) |
16 |
1 2
|
xlimres |
|- ( ph -> ( F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> ( F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) <-> ( F |` ( ZZ>= ` M ) ) ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) ) |
18 |
15 17
|
mpbird |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) |
19 |
|
releldm |
|- ( ( Rel ~~>* /\ F ~~>* ( ~~>* ` ( F |` ( ZZ>= ` M ) ) ) ) -> F e. dom ~~>* ) |
20 |
3 18 19
|
sylancr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) -> F e. dom ~~>* ) |
21 |
12 20
|
impbida |
|- ( ph -> ( F e. dom ~~>* <-> ( F |` ( ZZ>= ` M ) ) e. dom ~~>* ) ) |