Metamath Proof Explorer


Theorem xlimresdm

Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimresdm.1 φ F * 𝑝𝑚
xlimresdm.2 φ M
Assertion xlimresdm φ F dom * F M dom *

Proof

Step Hyp Ref Expression
1 xlimresdm.1 φ F * 𝑝𝑚
2 xlimresdm.2 φ M
3 xlimrel Rel *
4 xlimdm F dom * F * * F
5 4 a1i φ F dom * F * * F
6 5 biimpa φ F dom * F * * F
7 1 adantr φ F dom * F * 𝑝𝑚
8 2 adantr φ F dom * M
9 7 8 xlimres φ F dom * F * * F F M * * F
10 6 9 mpbid φ F dom * F M * * F
11 releldm Rel * F M * * F F M dom *
12 3 10 11 sylancr φ F dom * F M dom *
13 xlimdm F M dom * F M * * F M
14 13 biimpi F M dom * F M * * F M
15 14 adantl φ F M dom * F M * * F M
16 1 2 xlimres φ F * * F M F M * * F M
17 16 adantr φ F M dom * F * * F M F M * * F M
18 15 17 mpbird φ F M dom * F * * F M
19 releldm Rel * F * * F M F dom *
20 3 18 19 sylancr φ F M dom * F dom *
21 12 20 impbida φ F dom * F M dom *