Metamath Proof Explorer


Theorem xlimpnfliminf2

Description: A sequence of extended reals converges to +oo if and only if its superior limit is also +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfliminf2.m
|- ( ph -> M e. ZZ )
xlimpnfliminf2.z
|- Z = ( ZZ>= ` M )
xlimpnfliminf2.f
|- ( ph -> F : Z --> RR* )
Assertion xlimpnfliminf2
|- ( ph -> ( F ~~>* +oo <-> ( liminf ` F ) = +oo ) )

Proof

Step Hyp Ref Expression
1 xlimpnfliminf2.m
 |-  ( ph -> M e. ZZ )
2 xlimpnfliminf2.z
 |-  Z = ( ZZ>= ` M )
3 xlimpnfliminf2.f
 |-  ( ph -> F : Z --> RR* )
4 1 2 3 xlimpnfv
 |-  ( ph -> ( F ~~>* +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) )
5 nfcv
 |-  F/_ j F
6 5 1 2 3 liminfpnfuz
 |-  ( ph -> ( ( liminf ` F ) = +oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) x <_ ( F ` j ) ) )
7 4 6 bitr4d
 |-  ( ph -> ( F ~~>* +oo <-> ( liminf ` F ) = +oo ) )