| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mscl.x |  |-  X = ( Base ` M ) | 
						
							| 2 |  | mscl.d |  |-  D = ( dist ` M ) | 
						
							| 3 |  | ovres |  |-  ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) | 
						
							| 5 | 1 2 | xmsxmet2 |  |-  ( M e. *MetSp -> ( D |` ( X X. X ) ) e. ( *Met ` X ) ) | 
						
							| 6 |  | xmetcl |  |-  ( ( ( D |` ( X X. X ) ) e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) e. RR* ) | 
						
							| 7 | 5 6 | syl3an1 |  |-  ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) e. RR* ) | 
						
							| 8 | 4 7 | eqeltrrd |  |-  ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |