Metamath Proof Explorer


Theorem xmscl

Description: Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion xmscl M∞MetSpAXBXADB*

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 ovres AXBXADX×XB=ADB
4 3 3adant1 M∞MetSpAXBXADX×XB=ADB
5 1 2 xmsxmet2 M∞MetSpDX×X∞MetX
6 xmetcl DX×X∞MetXAXBXADX×XB*
7 5 6 syl3an1 M∞MetSpAXBXADX×XB*
8 4 7 eqeltrrd M∞MetSpAXBXADB*