Metamath Proof Explorer


Theorem xmsge0

Description: The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion xmsge0 M∞MetSpAXBX0ADB

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 xmsxmet2 M∞MetSpDX×X∞MetX
4 xmetge0 DX×X∞MetXAXBX0ADX×XB
5 3 4 syl3an1 M∞MetSpAXBX0ADX×XB
6 ovres AXBXADX×XB=ADB
7 6 3adant1 M∞MetSpAXBXADX×XB=ADB
8 5 7 breqtrd M∞MetSpAXBX0ADB