Step |
Hyp |
Ref |
Expression |
1 |
|
inrab |
|- ( { r e. ( _V X. _V ) | ( 1st ` r ) e. A } i^i { r e. ( _V X. _V ) | ( 2nd ` r ) e. B } ) = { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } |
2 |
|
f1stres |
|- ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
3 |
|
ffn |
|- ( ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
4 |
|
fncnvima2 |
|- ( ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( `' ( 1st |` ( _V X. _V ) ) " A ) = { r e. ( _V X. _V ) | ( ( 1st |` ( _V X. _V ) ) ` r ) e. A } ) |
5 |
2 3 4
|
mp2b |
|- ( `' ( 1st |` ( _V X. _V ) ) " A ) = { r e. ( _V X. _V ) | ( ( 1st |` ( _V X. _V ) ) ` r ) e. A } |
6 |
|
fvres |
|- ( r e. ( _V X. _V ) -> ( ( 1st |` ( _V X. _V ) ) ` r ) = ( 1st ` r ) ) |
7 |
6
|
eleq1d |
|- ( r e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` r ) e. A <-> ( 1st ` r ) e. A ) ) |
8 |
7
|
rabbiia |
|- { r e. ( _V X. _V ) | ( ( 1st |` ( _V X. _V ) ) ` r ) e. A } = { r e. ( _V X. _V ) | ( 1st ` r ) e. A } |
9 |
5 8
|
eqtri |
|- ( `' ( 1st |` ( _V X. _V ) ) " A ) = { r e. ( _V X. _V ) | ( 1st ` r ) e. A } |
10 |
|
f2ndres |
|- ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
11 |
|
ffn |
|- ( ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
12 |
|
fncnvima2 |
|- ( ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( `' ( 2nd |` ( _V X. _V ) ) " B ) = { r e. ( _V X. _V ) | ( ( 2nd |` ( _V X. _V ) ) ` r ) e. B } ) |
13 |
10 11 12
|
mp2b |
|- ( `' ( 2nd |` ( _V X. _V ) ) " B ) = { r e. ( _V X. _V ) | ( ( 2nd |` ( _V X. _V ) ) ` r ) e. B } |
14 |
|
fvres |
|- ( r e. ( _V X. _V ) -> ( ( 2nd |` ( _V X. _V ) ) ` r ) = ( 2nd ` r ) ) |
15 |
14
|
eleq1d |
|- ( r e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` r ) e. B <-> ( 2nd ` r ) e. B ) ) |
16 |
15
|
rabbiia |
|- { r e. ( _V X. _V ) | ( ( 2nd |` ( _V X. _V ) ) ` r ) e. B } = { r e. ( _V X. _V ) | ( 2nd ` r ) e. B } |
17 |
13 16
|
eqtri |
|- ( `' ( 2nd |` ( _V X. _V ) ) " B ) = { r e. ( _V X. _V ) | ( 2nd ` r ) e. B } |
18 |
9 17
|
ineq12i |
|- ( ( `' ( 1st |` ( _V X. _V ) ) " A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) " B ) ) = ( { r e. ( _V X. _V ) | ( 1st ` r ) e. A } i^i { r e. ( _V X. _V ) | ( 2nd ` r ) e. B } ) |
19 |
|
xp2 |
|- ( A X. B ) = { r e. ( _V X. _V ) | ( ( 1st ` r ) e. A /\ ( 2nd ` r ) e. B ) } |
20 |
1 18 19
|
3eqtr4ri |
|- ( A X. B ) = ( ( `' ( 1st |` ( _V X. _V ) ) " A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) " B ) ) |