Metamath Proof Explorer


Theorem xpintrreld

Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses xpintrreld.r
|- ( ph -> ( R o. R ) C_ R )
xpintrreld.s
|- ( ph -> S = ( R i^i ( A X. B ) ) )
Assertion xpintrreld
|- ( ph -> ( S o. S ) C_ S )

Proof

Step Hyp Ref Expression
1 xpintrreld.r
 |-  ( ph -> ( R o. R ) C_ R )
2 xpintrreld.s
 |-  ( ph -> S = ( R i^i ( A X. B ) ) )
3 xptrrel
 |-  ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B )
4 3 a1i
 |-  ( ph -> ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) )
5 1 4 2 trrelind
 |-  ( ph -> ( S o. S ) C_ S )