Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpintrreld.r | ⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| xpintrreld.s | ⊢ ( 𝜑 → 𝑆 = ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ) | ||
| Assertion | xpintrreld | ⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpintrreld.r | ⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| 2 | xpintrreld.s | ⊢ ( 𝜑 → 𝑆 = ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ) | |
| 3 | xptrrel | ⊢ ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 5 | 1 4 2 | trrelind | ⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |