Metamath Proof Explorer


Theorem xpintrreld

Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses xpintrreld.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
xpintrreld.s ( 𝜑𝑆 = ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) )
Assertion xpintrreld ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 xpintrreld.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
2 xpintrreld.s ( 𝜑𝑆 = ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) )
3 xptrrel ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 )
4 3 a1i ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) )
5 1 4 2 trrelind ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )