| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trrelind.r |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 2 |
|
trrelind.s |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
| 3 |
|
trrelind.t |
⊢ ( 𝜑 → 𝑇 = ( 𝑅 ∩ 𝑆 ) ) |
| 4 |
|
inss1 |
⊢ ( 𝑅 ∩ 𝑆 ) ⊆ 𝑅 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ∩ 𝑆 ) ⊆ 𝑅 ) |
| 6 |
1 5 5
|
trrelssd |
⊢ ( 𝜑 → ( ( 𝑅 ∩ 𝑆 ) ∘ ( 𝑅 ∩ 𝑆 ) ) ⊆ 𝑅 ) |
| 7 |
|
inss2 |
⊢ ( 𝑅 ∩ 𝑆 ) ⊆ 𝑆 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ∩ 𝑆 ) ⊆ 𝑆 ) |
| 9 |
2 8 8
|
trrelssd |
⊢ ( 𝜑 → ( ( 𝑅 ∩ 𝑆 ) ∘ ( 𝑅 ∩ 𝑆 ) ) ⊆ 𝑆 ) |
| 10 |
6 9
|
ssind |
⊢ ( 𝜑 → ( ( 𝑅 ∩ 𝑆 ) ∘ ( 𝑅 ∩ 𝑆 ) ) ⊆ ( 𝑅 ∩ 𝑆 ) ) |
| 11 |
3 3
|
coeq12d |
⊢ ( 𝜑 → ( 𝑇 ∘ 𝑇 ) = ( ( 𝑅 ∩ 𝑆 ) ∘ ( 𝑅 ∩ 𝑆 ) ) ) |
| 12 |
10 11 3
|
3sstr4d |
⊢ ( 𝜑 → ( 𝑇 ∘ 𝑇 ) ⊆ 𝑇 ) |