Metamath Proof Explorer


Theorem trrelind

Description: The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelind.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
trrelind.s ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )
trrelind.t ( 𝜑𝑇 = ( 𝑅𝑆 ) )
Assertion trrelind ( 𝜑 → ( 𝑇𝑇 ) ⊆ 𝑇 )

Proof

Step Hyp Ref Expression
1 trrelind.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
2 trrelind.s ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )
3 trrelind.t ( 𝜑𝑇 = ( 𝑅𝑆 ) )
4 inss1 ( 𝑅𝑆 ) ⊆ 𝑅
5 4 a1i ( 𝜑 → ( 𝑅𝑆 ) ⊆ 𝑅 )
6 1 5 5 trrelssd ( 𝜑 → ( ( 𝑅𝑆 ) ∘ ( 𝑅𝑆 ) ) ⊆ 𝑅 )
7 inss2 ( 𝑅𝑆 ) ⊆ 𝑆
8 7 a1i ( 𝜑 → ( 𝑅𝑆 ) ⊆ 𝑆 )
9 2 8 8 trrelssd ( 𝜑 → ( ( 𝑅𝑆 ) ∘ ( 𝑅𝑆 ) ) ⊆ 𝑆 )
10 6 9 ssind ( 𝜑 → ( ( 𝑅𝑆 ) ∘ ( 𝑅𝑆 ) ) ⊆ ( 𝑅𝑆 ) )
11 3 3 coeq12d ( 𝜑 → ( 𝑇𝑇 ) = ( ( 𝑅𝑆 ) ∘ ( 𝑅𝑆 ) ) )
12 10 11 3 3sstr4d ( 𝜑 → ( 𝑇𝑇 ) ⊆ 𝑇 )