Metamath Proof Explorer


Theorem trrelind

Description: The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelind.r φ R R R
trrelind.s φ S S S
trrelind.t φ T = R S
Assertion trrelind φ T T T

Proof

Step Hyp Ref Expression
1 trrelind.r φ R R R
2 trrelind.s φ S S S
3 trrelind.t φ T = R S
4 inss1 R S R
5 4 a1i φ R S R
6 1 5 5 trrelssd φ R S R S R
7 inss2 R S S
8 7 a1i φ R S S
9 2 8 8 trrelssd φ R S R S S
10 6 9 ssind φ R S R S R S
11 3 3 coeq12d φ T T = R S R S
12 10 11 3 3sstr4d φ T T T