| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trrelind.r |
|- ( ph -> ( R o. R ) C_ R ) |
| 2 |
|
trrelind.s |
|- ( ph -> ( S o. S ) C_ S ) |
| 3 |
|
trrelind.t |
|- ( ph -> T = ( R i^i S ) ) |
| 4 |
|
inss1 |
|- ( R i^i S ) C_ R |
| 5 |
4
|
a1i |
|- ( ph -> ( R i^i S ) C_ R ) |
| 6 |
1 5 5
|
trrelssd |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ R ) |
| 7 |
|
inss2 |
|- ( R i^i S ) C_ S |
| 8 |
7
|
a1i |
|- ( ph -> ( R i^i S ) C_ S ) |
| 9 |
2 8 8
|
trrelssd |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ S ) |
| 10 |
6 9
|
ssind |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ ( R i^i S ) ) |
| 11 |
3 3
|
coeq12d |
|- ( ph -> ( T o. T ) = ( ( R i^i S ) o. ( R i^i S ) ) ) |
| 12 |
10 11 3
|
3sstr4d |
|- ( ph -> ( T o. T ) C_ T ) |