Metamath Proof Explorer


Theorem trrelind

Description: The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelind.r
|- ( ph -> ( R o. R ) C_ R )
trrelind.s
|- ( ph -> ( S o. S ) C_ S )
trrelind.t
|- ( ph -> T = ( R i^i S ) )
Assertion trrelind
|- ( ph -> ( T o. T ) C_ T )

Proof

Step Hyp Ref Expression
1 trrelind.r
 |-  ( ph -> ( R o. R ) C_ R )
2 trrelind.s
 |-  ( ph -> ( S o. S ) C_ S )
3 trrelind.t
 |-  ( ph -> T = ( R i^i S ) )
4 inss1
 |-  ( R i^i S ) C_ R
5 4 a1i
 |-  ( ph -> ( R i^i S ) C_ R )
6 1 5 5 trrelssd
 |-  ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ R )
7 inss2
 |-  ( R i^i S ) C_ S
8 7 a1i
 |-  ( ph -> ( R i^i S ) C_ S )
9 2 8 8 trrelssd
 |-  ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ S )
10 6 9 ssind
 |-  ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ ( R i^i S ) )
11 3 3 coeq12d
 |-  ( ph -> ( T o. T ) = ( ( R i^i S ) o. ( R i^i S ) ) )
12 10 11 3 3sstr4d
 |-  ( ph -> ( T o. T ) C_ T )