Step |
Hyp |
Ref |
Expression |
1 |
|
trrelind.r |
|- ( ph -> ( R o. R ) C_ R ) |
2 |
|
trrelind.s |
|- ( ph -> ( S o. S ) C_ S ) |
3 |
|
trrelind.t |
|- ( ph -> T = ( R i^i S ) ) |
4 |
|
inss1 |
|- ( R i^i S ) C_ R |
5 |
4
|
a1i |
|- ( ph -> ( R i^i S ) C_ R ) |
6 |
1 5 5
|
trrelssd |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ R ) |
7 |
|
inss2 |
|- ( R i^i S ) C_ S |
8 |
7
|
a1i |
|- ( ph -> ( R i^i S ) C_ S ) |
9 |
2 8 8
|
trrelssd |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ S ) |
10 |
6 9
|
ssind |
|- ( ph -> ( ( R i^i S ) o. ( R i^i S ) ) C_ ( R i^i S ) ) |
11 |
3 3
|
coeq12d |
|- ( ph -> ( T o. T ) = ( ( R i^i S ) o. ( R i^i S ) ) ) |
12 |
10 11 3
|
3sstr4d |
|- ( ph -> ( T o. T ) C_ T ) |