Metamath Proof Explorer
Description: The restriction of a transitive relation is a transitive relation.
(Contributed by RP, 24-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
restrreld.r |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
|
|
restrreld.s |
⊢ ( 𝜑 → 𝑆 = ( 𝑅 ↾ 𝐴 ) ) |
|
Assertion |
restrreld |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restrreld.r |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 2 |
|
restrreld.s |
⊢ ( 𝜑 → 𝑆 = ( 𝑅 ↾ 𝐴 ) ) |
| 3 |
|
df-res |
⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) ) |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝜑 → 𝑆 = ( 𝑅 ∩ ( 𝐴 × V ) ) ) |
| 5 |
1 4
|
xpintrreld |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |