Metamath Proof Explorer


Theorem restrreld

Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses restrreld.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
restrreld.s ( 𝜑𝑆 = ( 𝑅𝐴 ) )
Assertion restrreld ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 restrreld.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
2 restrreld.s ( 𝜑𝑆 = ( 𝑅𝐴 ) )
3 df-res ( 𝑅𝐴 ) = ( 𝑅 ∩ ( 𝐴 × V ) )
4 2 3 eqtrdi ( 𝜑𝑆 = ( 𝑅 ∩ ( 𝐴 × V ) ) )
5 1 4 xpintrreld ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )