Metamath Proof Explorer


Theorem restrreld

Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses restrreld.r
|- ( ph -> ( R o. R ) C_ R )
restrreld.s
|- ( ph -> S = ( R |` A ) )
Assertion restrreld
|- ( ph -> ( S o. S ) C_ S )

Proof

Step Hyp Ref Expression
1 restrreld.r
 |-  ( ph -> ( R o. R ) C_ R )
2 restrreld.s
 |-  ( ph -> S = ( R |` A ) )
3 df-res
 |-  ( R |` A ) = ( R i^i ( A X. _V ) )
4 2 3 eqtrdi
 |-  ( ph -> S = ( R i^i ( A X. _V ) ) )
5 1 4 xpintrreld
 |-  ( ph -> ( S o. S ) C_ S )