Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restrreld.r | |- ( ph -> ( R o. R ) C_ R ) |
|
| restrreld.s | |- ( ph -> S = ( R |` A ) ) |
||
| Assertion | restrreld | |- ( ph -> ( S o. S ) C_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restrreld.r | |- ( ph -> ( R o. R ) C_ R ) |
|
| 2 | restrreld.s | |- ( ph -> S = ( R |` A ) ) |
|
| 3 | df-res | |- ( R |` A ) = ( R i^i ( A X. _V ) ) |
|
| 4 | 2 3 | eqtrdi | |- ( ph -> S = ( R i^i ( A X. _V ) ) ) |
| 5 | 1 4 | xpintrreld | |- ( ph -> ( S o. S ) C_ S ) |