Metamath Proof Explorer


Theorem restrreld

Description: The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses restrreld.r φ R R R
restrreld.s φ S = R A
Assertion restrreld φ S S S

Proof

Step Hyp Ref Expression
1 restrreld.r φ R R R
2 restrreld.s φ S = R A
3 df-res R A = R A × V
4 2 3 eqtrdi φ S = R A × V
5 1 4 xpintrreld φ S S S