Metamath Proof Explorer


Theorem xrsle

Description: The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsle
|- <_ = ( le ` RR*s )

Proof

Step Hyp Ref Expression
1 xrex
 |-  RR* e. _V
2 1 1 xpex
 |-  ( RR* X. RR* ) e. _V
3 lerelxr
 |-  <_ C_ ( RR* X. RR* )
4 2 3 ssexi
 |-  <_ e. _V
5 df-xrs
 |-  RR*s = ( { <. ( Base ` ndx ) , RR* >. , <. ( +g ` ndx ) , +e >. , <. ( .r ` ndx ) , *e >. } u. { <. ( TopSet ` ndx ) , ( ordTop ` <_ ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( x e. RR* , y e. RR* |-> if ( x <_ y , ( y +e -e x ) , ( x +e -e y ) ) ) >. } )
6 5 odrngle
 |-  ( <_ e. _V -> <_ = ( le ` RR*s ) )
7 4 6 ax-mp
 |-  <_ = ( le ` RR*s )