Metamath Proof Explorer


Theorem zlmodzxzlmod

Description: The ZZ-module ZZ X. ZZ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z
|- Z = ( ZZring freeLMod { 0 , 1 } )
Assertion zlmodzxzlmod
|- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) )

Proof

Step Hyp Ref Expression
1 zlmodzxz.z
 |-  Z = ( ZZring freeLMod { 0 , 1 } )
2 zringring
 |-  ZZring e. Ring
3 prex
 |-  { 0 , 1 } e. _V
4 1 frlmlmod
 |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> Z e. LMod )
5 2 3 4 mp2an
 |-  Z e. LMod
6 1 frlmsca
 |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> ZZring = ( Scalar ` Z ) )
7 2 3 6 mp2an
 |-  ZZring = ( Scalar ` Z )
8 5 7 pm3.2i
 |-  ( Z e. LMod /\ ZZring = ( Scalar ` Z ) )