Description: The ZZ-module ZZ X. ZZ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmodzxz.z | |- Z = ( ZZring freeLMod { 0 , 1 } ) | |
| Assertion | zlmodzxzlmod | |- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zlmodzxz.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | |
| 2 | zringring | |- ZZring e. Ring | |
| 3 | prex |  |-  { 0 , 1 } e. _V | |
| 4 | 1 | frlmlmod |  |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> Z e. LMod ) | 
| 5 | 2 3 4 | mp2an | |- Z e. LMod | 
| 6 | 1 | frlmsca |  |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. _V ) -> ZZring = ( Scalar ` Z ) ) | 
| 7 | 2 3 6 | mp2an | |- ZZring = ( Scalar ` Z ) | 
| 8 | 5 7 | pm3.2i | |- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) |