Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxz.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
c0ex |
|- 0 e. _V |
3 |
|
1ex |
|- 1 e. _V |
4 |
2 3
|
pm3.2i |
|- ( 0 e. _V /\ 1 e. _V ) |
5 |
|
0ne1 |
|- 0 =/= 1 |
6 |
|
fprg |
|- ( ( ( 0 e. _V /\ 1 e. _V ) /\ ( A e. ZZ /\ B e. ZZ ) /\ 0 =/= 1 ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> { A , B } ) |
7 |
4 5 6
|
mp3an13 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> { A , B } ) |
8 |
|
prssi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { A , B } C_ ZZ ) |
9 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
10 |
8 9
|
sseqtrdi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { A , B } C_ ( Base ` ZZring ) ) |
11 |
7 10
|
fssd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) |
12 |
|
fvex |
|- ( Base ` ZZring ) e. _V |
13 |
|
prex |
|- { 0 , 1 } e. _V |
14 |
12 13
|
pm3.2i |
|- ( ( Base ` ZZring ) e. _V /\ { 0 , 1 } e. _V ) |
15 |
|
elmapg |
|- ( ( ( Base ` ZZring ) e. _V /\ { 0 , 1 } e. _V ) -> ( { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) <-> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) ) |
16 |
14 15
|
mp1i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) <-> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) ) |
17 |
11 16
|
mpbird |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) ) |
18 |
|
zringring |
|- ZZring e. Ring |
19 |
|
prfi |
|- { 0 , 1 } e. Fin |
20 |
18 19
|
pm3.2i |
|- ( ZZring e. Ring /\ { 0 , 1 } e. Fin ) |
21 |
|
eqid |
|- ( Base ` ZZring ) = ( Base ` ZZring ) |
22 |
1 21
|
frlmfibas |
|- ( ( ZZring e. Ring /\ { 0 , 1 } e. Fin ) -> ( ( Base ` ZZring ) ^m { 0 , 1 } ) = ( Base ` Z ) ) |
23 |
20 22
|
mp1i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( Base ` ZZring ) ^m { 0 , 1 } ) = ( Base ` Z ) ) |
24 |
17 23
|
eleqtrd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } e. ( Base ` Z ) ) |