| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxz.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | c0ex |  |-  0 e. _V | 
						
							| 3 |  | 1ex |  |-  1 e. _V | 
						
							| 4 | 2 3 | pm3.2i |  |-  ( 0 e. _V /\ 1 e. _V ) | 
						
							| 5 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 6 |  | fprg |  |-  ( ( ( 0 e. _V /\ 1 e. _V ) /\ ( A e. ZZ /\ B e. ZZ ) /\ 0 =/= 1 ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> { A , B } ) | 
						
							| 7 | 4 5 6 | mp3an13 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> { A , B } ) | 
						
							| 8 |  | prssi |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { A , B } C_ ZZ ) | 
						
							| 9 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 10 | 8 9 | sseqtrdi |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { A , B } C_ ( Base ` ZZring ) ) | 
						
							| 11 | 7 10 | fssd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) | 
						
							| 12 |  | fvex |  |-  ( Base ` ZZring ) e. _V | 
						
							| 13 |  | prex |  |-  { 0 , 1 } e. _V | 
						
							| 14 | 12 13 | pm3.2i |  |-  ( ( Base ` ZZring ) e. _V /\ { 0 , 1 } e. _V ) | 
						
							| 15 |  | elmapg |  |-  ( ( ( Base ` ZZring ) e. _V /\ { 0 , 1 } e. _V ) -> ( { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) <-> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) <-> { <. 0 , A >. , <. 1 , B >. } : { 0 , 1 } --> ( Base ` ZZring ) ) ) | 
						
							| 17 | 11 16 | mpbird |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } e. ( ( Base ` ZZring ) ^m { 0 , 1 } ) ) | 
						
							| 18 |  | zringring |  |-  ZZring e. Ring | 
						
							| 19 |  | prfi |  |-  { 0 , 1 } e. Fin | 
						
							| 20 | 18 19 | pm3.2i |  |-  ( ZZring e. Ring /\ { 0 , 1 } e. Fin ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ZZring ) = ( Base ` ZZring ) | 
						
							| 22 | 1 21 | frlmfibas |  |-  ( ( ZZring e. Ring /\ { 0 , 1 } e. Fin ) -> ( ( Base ` ZZring ) ^m { 0 , 1 } ) = ( Base ` Z ) ) | 
						
							| 23 | 20 22 | mp1i |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( Base ` ZZring ) ^m { 0 , 1 } ) = ( Base ` Z ) ) | 
						
							| 24 | 17 23 | eleqtrd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { <. 0 , A >. , <. 1 , B >. } e. ( Base ` Z ) ) |