| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxz.z | ⊢ 𝑍  =  ( ℤring  freeLMod  { 0 ,  1 } ) | 
						
							| 2 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 3 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 4 | 2 3 | pm3.2i | ⊢ ( 0  ∈  V  ∧  1  ∈  V ) | 
						
							| 5 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 6 |  | fprg | ⊢ ( ( ( 0  ∈  V  ∧  1  ∈  V )  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  0  ≠  1 )  →  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 } : { 0 ,  1 } ⟶ { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 4 5 6 | mp3an13 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 } : { 0 ,  1 } ⟶ { 𝐴 ,  𝐵 } ) | 
						
							| 8 |  | prssi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 𝐴 ,  𝐵 }  ⊆  ℤ ) | 
						
							| 9 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 10 | 8 9 | sseqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 𝐴 ,  𝐵 }  ⊆  ( Base ‘ ℤring ) ) | 
						
							| 11 | 7 10 | fssd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 } : { 0 ,  1 } ⟶ ( Base ‘ ℤring ) ) | 
						
							| 12 |  | fvex | ⊢ ( Base ‘ ℤring )  ∈  V | 
						
							| 13 |  | prex | ⊢ { 0 ,  1 }  ∈  V | 
						
							| 14 | 12 13 | pm3.2i | ⊢ ( ( Base ‘ ℤring )  ∈  V  ∧  { 0 ,  1 }  ∈  V ) | 
						
							| 15 |  | elmapg | ⊢ ( ( ( Base ‘ ℤring )  ∈  V  ∧  { 0 ,  1 }  ∈  V )  →  ( { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 }  ∈  ( ( Base ‘ ℤring )  ↑m  { 0 ,  1 } )  ↔  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 } : { 0 ,  1 } ⟶ ( Base ‘ ℤring ) ) ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 }  ∈  ( ( Base ‘ ℤring )  ↑m  { 0 ,  1 } )  ↔  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 } : { 0 ,  1 } ⟶ ( Base ‘ ℤring ) ) ) | 
						
							| 17 | 11 16 | mpbird | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 }  ∈  ( ( Base ‘ ℤring )  ↑m  { 0 ,  1 } ) ) | 
						
							| 18 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 19 |  | prfi | ⊢ { 0 ,  1 }  ∈  Fin | 
						
							| 20 | 18 19 | pm3.2i | ⊢ ( ℤring  ∈  Ring  ∧  { 0 ,  1 }  ∈  Fin ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ℤring )  =  ( Base ‘ ℤring ) | 
						
							| 22 | 1 21 | frlmfibas | ⊢ ( ( ℤring  ∈  Ring  ∧  { 0 ,  1 }  ∈  Fin )  →  ( ( Base ‘ ℤring )  ↑m  { 0 ,  1 } )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 23 | 20 22 | mp1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( Base ‘ ℤring )  ↑m  { 0 ,  1 } )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 24 | 17 23 | eleqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  { 〈 0 ,  𝐴 〉 ,  〈 1 ,  𝐵 〉 }  ∈  ( Base ‘ 𝑍 ) ) |