Metamath Proof Explorer


Theorem zlmodzxzel

Description: An element of the (base set of the) ZZ-module ZZ X. ZZ . (Contributed by AV, 21-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
Assertion zlmodzxzel ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( Base ‘ 𝑍 ) )

Proof

Step Hyp Ref Expression
1 zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 c0ex 0 ∈ V
3 1ex 1 ∈ V
4 2 3 pm3.2i ( 0 ∈ V ∧ 1 ∈ V )
5 0ne1 0 ≠ 1
6 fprg ( ( ( 0 ∈ V ∧ 1 ∈ V ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 0 ≠ 1 ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } : { 0 , 1 } ⟶ { 𝐴 , 𝐵 } )
7 4 5 6 mp3an13 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } : { 0 , 1 } ⟶ { 𝐴 , 𝐵 } )
8 prssi ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝐴 , 𝐵 } ⊆ ℤ )
9 zringbas ℤ = ( Base ‘ ℤring )
10 8 9 sseqtrdi ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝐴 , 𝐵 } ⊆ ( Base ‘ ℤring ) )
11 7 10 fssd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } : { 0 , 1 } ⟶ ( Base ‘ ℤring ) )
12 fvex ( Base ‘ ℤring ) ∈ V
13 prex { 0 , 1 } ∈ V
14 12 13 pm3.2i ( ( Base ‘ ℤring ) ∈ V ∧ { 0 , 1 } ∈ V )
15 elmapg ( ( ( Base ‘ ℤring ) ∈ V ∧ { 0 , 1 } ∈ V ) → ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( ( Base ‘ ℤring ) ↑m { 0 , 1 } ) ↔ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } : { 0 , 1 } ⟶ ( Base ‘ ℤring ) ) )
16 14 15 mp1i ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( ( Base ‘ ℤring ) ↑m { 0 , 1 } ) ↔ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } : { 0 , 1 } ⟶ ( Base ‘ ℤring ) ) )
17 11 16 mpbird ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( ( Base ‘ ℤring ) ↑m { 0 , 1 } ) )
18 zringring ring ∈ Ring
19 prfi { 0 , 1 } ∈ Fin
20 18 19 pm3.2i ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ Fin )
21 eqid ( Base ‘ ℤring ) = ( Base ‘ ℤring )
22 1 21 frlmfibas ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ Fin ) → ( ( Base ‘ ℤring ) ↑m { 0 , 1 } ) = ( Base ‘ 𝑍 ) )
23 20 22 mp1i ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( Base ‘ ℤring ) ↑m { 0 , 1 } ) = ( Base ‘ 𝑍 ) )
24 17 23 eleqtrd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( Base ‘ 𝑍 ) )