Metamath Proof Explorer


Theorem zlmodzxzel

Description: An element of the (base set of the) ZZ-module ZZ X. ZZ . (Contributed by AV, 21-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z Z = ring freeLMod 0 1
Assertion zlmodzxzel A B 0 A 1 B Base Z

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 c0ex 0 V
3 1ex 1 V
4 2 3 pm3.2i 0 V 1 V
5 0ne1 0 1
6 fprg 0 V 1 V A B 0 1 0 A 1 B : 0 1 A B
7 4 5 6 mp3an13 A B 0 A 1 B : 0 1 A B
8 prssi A B A B
9 zringbas = Base ring
10 8 9 sseqtrdi A B A B Base ring
11 7 10 fssd A B 0 A 1 B : 0 1 Base ring
12 fvex Base ring V
13 prex 0 1 V
14 12 13 pm3.2i Base ring V 0 1 V
15 elmapg Base ring V 0 1 V 0 A 1 B Base ring 0 1 0 A 1 B : 0 1 Base ring
16 14 15 mp1i A B 0 A 1 B Base ring 0 1 0 A 1 B : 0 1 Base ring
17 11 16 mpbird A B 0 A 1 B Base ring 0 1
18 zringring ring Ring
19 prfi 0 1 Fin
20 18 19 pm3.2i ring Ring 0 1 Fin
21 eqid Base ring = Base ring
22 1 21 frlmfibas ring Ring 0 1 Fin Base ring 0 1 = Base Z
23 20 22 mp1i A B Base ring 0 1 = Base Z
24 17 23 eleqtrd A B 0 A 1 B Base Z