Metamath Proof Explorer


Theorem zlmodzxzlmod

Description: The ZZ-module ZZ X. ZZ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
Assertion zlmodzxzlmod ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) )

Proof

Step Hyp Ref Expression
1 zlmodzxz.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 zringring ring ∈ Ring
3 prex { 0 , 1 } ∈ V
4 1 frlmlmod ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → 𝑍 ∈ LMod )
5 2 3 4 mp2an 𝑍 ∈ LMod
6 1 frlmsca ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → ℤring = ( Scalar ‘ 𝑍 ) )
7 2 3 6 mp2an ring = ( Scalar ‘ 𝑍 )
8 5 7 pm3.2i ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) )