Description: The ZZ-module ZZ X. ZZ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmodzxz.z | ⊢ 𝑍 = ( ℤring freeLMod { 0 , 1 } ) | |
| Assertion | zlmodzxzlmod | ⊢ ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zlmodzxz.z | ⊢ 𝑍 = ( ℤring freeLMod { 0 , 1 } ) | |
| 2 | zringring | ⊢ ℤring ∈ Ring | |
| 3 | prex | ⊢ { 0 , 1 } ∈ V | |
| 4 | 1 | frlmlmod | ⊢ ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → 𝑍 ∈ LMod ) | 
| 5 | 2 3 4 | mp2an | ⊢ 𝑍 ∈ LMod | 
| 6 | 1 | frlmsca | ⊢ ( ( ℤring ∈ Ring ∧ { 0 , 1 } ∈ V ) → ℤring = ( Scalar ‘ 𝑍 ) ) | 
| 7 | 2 3 6 | mp2an | ⊢ ℤring = ( Scalar ‘ 𝑍 ) | 
| 8 | 5 7 | pm3.2i | ⊢ ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) |