Metamath Proof Explorer


Theorem zlmodzxzlmod

Description: The ZZ-module ZZ X. ZZ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z Z = ring freeLMod 0 1
Assertion zlmodzxzlmod Z LMod ring = Scalar Z

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z = ring freeLMod 0 1
2 zringring ring Ring
3 prex 0 1 V
4 1 frlmlmod ring Ring 0 1 V Z LMod
5 2 3 4 mp2an Z LMod
6 1 frlmsca ring Ring 0 1 V ring = Scalar Z
7 2 3 6 mp2an ring = Scalar Z
8 5 7 pm3.2i Z LMod ring = Scalar Z