| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zpnn0elfzo |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
| 2 |
|
zcn |
|- ( Z e. ZZ -> Z e. CC ) |
| 3 |
2
|
adantr |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> Z e. CC ) |
| 4 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 5 |
4
|
adantl |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> N e. CC ) |
| 6 |
|
1cnd |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> 1 e. CC ) |
| 7 |
3 5 6
|
addassd |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> ( ( Z + N ) + 1 ) = ( Z + ( N + 1 ) ) ) |
| 8 |
7
|
oveq2d |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z ..^ ( ( Z + N ) + 1 ) ) = ( Z ..^ ( Z + ( N + 1 ) ) ) ) |
| 9 |
1 8
|
eleqtrd |
|- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( Z + ( N + 1 ) ) ) ) |