| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 2 |
1
|
negidd |
|- ( A e. ZZ -> ( A + -u A ) = 0 ) |
| 3 |
|
zringgrp |
|- ZZring e. Grp |
| 4 |
|
id |
|- ( A e. ZZ -> A e. ZZ ) |
| 5 |
|
znegcl |
|- ( A e. ZZ -> -u A e. ZZ ) |
| 6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 7 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
| 8 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
| 9 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
| 10 |
6 7 8 9
|
grpinvid1 |
|- ( ( ZZring e. Grp /\ A e. ZZ /\ -u A e. ZZ ) -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 11 |
3 4 5 10
|
mp3an2i |
|- ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 12 |
2 11
|
mpbird |
|- ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) |
| 13 |
12
|
eqcomd |
|- ( A e. ZZ -> -u A = ( ( invg ` ZZring ) ` A ) ) |