| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 2 |
1
|
negidd |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 3 |
|
zringgrp |
⊢ ℤring ∈ Grp |
| 4 |
|
id |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) |
| 5 |
|
znegcl |
⊢ ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ ) |
| 6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 7 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 8 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
| 9 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
| 10 |
6 7 8 9
|
grpinvid1 |
⊢ ( ( ℤring ∈ Grp ∧ 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℤ ) → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 11 |
3 4 5 10
|
mp3an2i |
⊢ ( 𝐴 ∈ ℤ → ( ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 12 |
2 11
|
mpbird |
⊢ ( 𝐴 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝐴 ) = - 𝐴 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝐴 ∈ ℤ → - 𝐴 = ( ( invg ‘ ℤring ) ‘ 𝐴 ) ) |