| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 2 |
|
eqid |
⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) |
| 3 |
1 2
|
unitcl |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → 𝐴 ∈ ℤ ) |
| 4 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
| 5 |
|
zgz |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i] ) |
| 6 |
5
|
ssriv |
⊢ ℤ ⊆ ℤ[i] |
| 7 |
|
gzsubrg |
⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) |
| 8 |
|
eqid |
⊢ ( ℂfld ↾s ℤ[i] ) = ( ℂfld ↾s ℤ[i] ) |
| 9 |
8
|
subsubrg |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) ) ) |
| 10 |
7 9
|
ax-mp |
⊢ ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( ℤ ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) ) |
| 11 |
4 6 10
|
mpbir2an |
⊢ ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) |
| 12 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
| 13 |
|
ressabs |
⊢ ( ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) ∧ ℤ ⊆ ℤ[i] ) → ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) = ( ℂfld ↾s ℤ ) ) |
| 14 |
7 6 13
|
mp2an |
⊢ ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) = ( ℂfld ↾s ℤ ) |
| 15 |
12 14
|
eqtr4i |
⊢ ℤring = ( ( ℂfld ↾s ℤ[i] ) ↾s ℤ ) |
| 16 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) = ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) |
| 17 |
15 16 2
|
subrguss |
⊢ ( ℤ ∈ ( SubRing ‘ ( ℂfld ↾s ℤ[i] ) ) → ( Unit ‘ ℤring ) ⊆ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ) |
| 18 |
11 17
|
ax-mp |
⊢ ( Unit ‘ ℤring ) ⊆ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) |
| 19 |
18
|
sseli |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ) |
| 20 |
8
|
gzrngunit |
⊢ ( 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) ↔ ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 21 |
20
|
simprbi |
⊢ ( 𝐴 ∈ ( Unit ‘ ( ℂfld ↾s ℤ[i] ) ) → ( abs ‘ 𝐴 ) = 1 ) |
| 22 |
19 21
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → ( abs ‘ 𝐴 ) = 1 ) |
| 23 |
3 22
|
jca |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) → ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 24 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℂ ) |
| 26 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 ) |
| 27 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 28 |
27
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ≠ 0 ) |
| 29 |
26 28
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 30 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
| 31 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 32 |
30 31
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 33 |
32
|
necon3i |
⊢ ( ( abs ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 34 |
29 33
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0 ) |
| 35 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 36 |
25 34 35
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 37 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 38 |
|
cnfldinv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 39 |
25 34 38
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 40 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℝ ) |
| 42 |
|
absresq |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 43 |
41 42
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 44 |
26
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 45 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 46 |
44 45
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
| 47 |
25
|
sqvald |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 48 |
43 46 47
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 · 𝐴 ) = 1 ) |
| 49 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ∈ ℂ ) |
| 50 |
49 25 25 34
|
divmuld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 1 / 𝐴 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = 1 ) ) |
| 51 |
48 50
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 / 𝐴 ) = 𝐴 ) |
| 52 |
39 51
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = 𝐴 ) |
| 53 |
52 37
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) |
| 54 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 55 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 56 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 57 |
54 55 56
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 58 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 59 |
12 57 2 58
|
subrgunit |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 60 |
4 59
|
ax-mp |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ ) ) |
| 61 |
36 37 53 60
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( Unit ‘ ℤring ) ) |
| 62 |
23 61
|
impbii |
⊢ ( 𝐴 ∈ ( Unit ‘ ℤring ) ↔ ( 𝐴 ∈ ℤ ∧ ( abs ‘ 𝐴 ) = 1 ) ) |